首页 宗教 历史 传记 科学 武侠 文学 排行
搜索
今日热搜
消息
历史

你暂时还没有看过的小说

「 去追一部小说 」
查看全部历史
收藏

同步收藏的小说,实时追更

你暂时还没有收藏过小说

「 去追一部小说 」
查看全部收藏

金币

0

月票

0

通俗天文学-2

作者:西蒙·纽康 字数:20928 更新:2023-10-09 13:15:57

地球的周年运动及其结果  大家都知道地球不仅在自己的转轴上旋转,还环绕太阳做一年一次的公转。这种运动的结果——实际上是表明这种运动的现象——便是看起来好像太阳在众星之间每年环绕天球一周了。我们只要想象我们自己环绕太阳运动,并且看到太阳在向相反的方向运动,就不难知道一定会看出太阳在众星之间移动了,因为星辰比太阳要遥远得多。不错,这种运动不是立刻可以看出的,因为白昼看不见星。可是如果我们每天都守候着西天的某一颗星,就会看到它一天比一天落得早,换句话说,一天比一天更接近太阳——更确切些说,既然星的方位不变,太阳似乎就是向星辰的方向来的。这样一来,地球的周年运动就显然可知了。  假使我们能在白昼看见星辰,看它们散布在太阳周围,这种情形便会更加显然。我们定会看到,如果有一颗星在早晨与太阳同时升起,在一天之中,太阳就要渐向东去离开这颗星的。在太阳出没之间,太阳定会离开这颗星约有自己直径那么远的。到次日早晨,我们又会见到它已离这颗星很远,约有它的直径的二倍了。图4表示了春分时(3月21日前后)的这种情形。这种运动一月一月地继续不断。太阳离开这颗星环游一次天球,一年之后又回来与这颗星相会了。太阳的周年视运动(1)  上述情形的原因可从图5看出来,图中表示地球绕日运行的轨道用遥远的星辰作背景。当地球在A的时候,我们看见太阳在AM线上,好像它正在星辰中间的M点上一样。地球由A到B,太阳也由M到了N,照这样继续一年下去。古人早已知道太阳的这种周年运动,但他们费了很大的劲才把这现象画出来。他们想象了一根线绕过天球,太阳便每年依这路线环游天球一次。他们把这条线叫做“黄道”(ecliptic)。他们还发现了行星也大致不差却并不十分准确地在太阳的轨迹上从众星之间穿行。他们又想象出一条带子把黄道线夹在中间并且包括了所有已知行星和太阳,这带他们叫做“黄道带”(zodiac)。这条带分为十二宫,每宫包含一个星座。太阳每月经过一宫,全年经过十二宫。这便是我们所熟知的黄道十二宫,宫名分别和其中的星座名相同。这可不完全跟现在的情形相符,因为有一种很缓慢的岁差运动在中间,不久我们就要说明这一点。  我们现在就可看出,我们说过的环绕全天球的两道圈是由两种绝不相同的方法定出的。天球赤道是由地球转轴的方向规定的,恰在两天极的正中间嵌入天球。黄道却是由地球绕太阳的运动来决定的。  这两道圈并不一致,却在相对的两点相交,约成23.5度的角,或者说约为直角的四分之一。这个角便叫做“黄赤交角”(obliquity of the ecliptic)。要想正确明白何以发生这种情形,我们必须再说一下两天极。从我们已说过的话看来,不难知道两天极并不由天上的东西决定,却只是依据地球转轴的方向;它们不过是天上相对的两点正好和地球转轴成一直线罢了。天球赤道既是两天极正中间的大圆,也便自然是只由地球转轴的方向而定,跟别的毫不相干了。  现在我们想象地球绕日轨道是水平的。我们可把它想象成一个将太阳安置在中心的平盘的圆周。我们再假定地球依这圆周运行,中心恰好在平盘上;那么,假如地球的自转轴是垂直的,它的赤道也一定是水平的并且与平盘在同一平面内,而地球一年围绕平盘一周的时候,中心也永远正对着太阳了。于是在天球上,由太阳的路程来决定的黄道也一定跟天球赤道是同一圆圈了。黄赤交角(黄道倾斜角)的来历便是因为地球轨道并不垂直得像刚才所假定的,却倾斜了23.5度。黄道对平盘的倾斜也就刚好是这么多,所以,这倾斜只是由于地轴的倾斜。与此相关的有一件重要的事实,在地球绕太阳旋转的时候,它的轴在空间的方向是不变的;因此,地球北极便有时偏向太阳有时偏离太阳了。这种情形见图6,图中表示刚才假想的平面盘,地球的轴偏向右方。不论地球在太阳的东西南北,北极的方向永远不变。  要看出这种黄道倾斜的影响,我们可以假想在3月21日左右的一个正午,地球突然停止不旋转了,可是还继续环绕太阳运行。以后三个月内我们所见的便是图7的情形。图中假定我们正向南天望去。我们看到太阳正在子午圈上,乍一看似乎静止不动。图中表示天球赤道从东到西与地平相交,正如前面所说的情形,黄道与赤道相交于春分点。接着守候了约三个月的时间,我们就会看到太阳慢慢地沿着黄道走向写着“夏至点”的地方去。那一点是它途中最偏北的一点,它约在6月22日前后达到。太阳的周年视运动(2)  图8使我们能继续追踪太阳三个月。经过了夏至点以后,它的轨迹又使它渐渐接近天球赤道,约在9月23日前后它再由天球赤道经过。这一年剩下一半的路程刚好是它前六个月所行路程的复制品。它在12月22日达到离赤道最南的一点,又在3月21日经过天球赤道。这些日期偶尔会有前后的不同,那是因为闰年的缘故。  现在我们看到太阳的周年视运动的轨迹中有四点要注意:(一)我们开始守候的地方是春分点。(二)太阳行到最偏北的一点,又要开始返回而向南接近赤道时,那是夏至点。(三)正对着春分点的是秋分点,太阳在9月23日前后经过。(四)正对着夏至点而太阳最偏南的一点,那是冬至点。  在两天极之间通过这些点与天球赤道成直角的时圈称为“分至圈”(colures)。通过春分点的二分圈,是赤经的起点,我们已说过了。与之成直角的是二至圈。  现在我们再来说明星座与季候及每日时间的关系。假设今天太阳与一颗星星同时经过子午圈,那么明天太阳就要在该星的东边相距约一度远了,这就是说星要在太阳之前约4分钟经过子午圈;这种情形一天天继续下去,一直到一年以后两者又重新聚会,同时经过子午圈。这样一来,一颗星经过天空的次数要比太阳多一次了。这就是说:平年之间,太阳经过子午圈365次,一颗恒星就要经过366次。当然,如果我们取一颗南天的星来计算,它的出没次数又和太阳一样了。  天文学家计算这种与太阳不同的恒星出没的时间是用的一种“恒星日”(sidereal day),这一日之长正好等于一颗星(或春分点)两次经过子午圈之间的时间。天文学家又将一恒星日分为24恒星时,再照常分为分秒。他们又用一种比普通时钟每天快3分56秒的恒星时钟来计算恒星时。所谓恒星午便是春分点经过当地子午圈的时刻。那时恒星时钟便是零时零分零秒。照这样安排下去,恒星时钟便正好和天球的视转动时间一致。我们的天文学家不怕如许麻烦,设计了这样一个恒星时钟,为的是能无论昼夜,只要向他的时钟一看,便知道什么星正经过子午圈以及各星座都在什么位置上了。四季  假使地球转轴恰好与黄道的平面垂直,黄道便要与天球赤道相合,我们也便不会有四季之分了。太阳永远从正东方升起,向正西方落下,全年不变。地上的气候只会有稍微的变化,因为地球在1月比在6月离太阳略近一点。可是黄道既然倾斜了,那么,太阳在赤道北的时候(3月21日到9月23日)每天照耀在北半球上的时间便要比南半球长一些,而且与地面所成的角度也要大一些。在南半球上的情形便恰好与此相反。太阳从9月23日到3月21日之间照耀地面的时间,南半球上比北半球上长些了。于是当北半球是冬季时,南半球便是夏季,彼此恰恰相反,这边夏季那边又是冬季了。真运动与视运动的关系  在更进一步之前,我们不妨把我们所谈论过的现象总结一下。过去所说的是从两种观点出发的:一是地球的真运动;一是由这种真运动所引起的天体的视运动。  真周日运动是地球绕自己的轴自转。视周日运动是因地球自转而生的星体现象。  真周年运动是地球环绕太阳的公转。视周年运动是太阳在群星之间环绕天球。  由于真周日运动,我们的地平便从太阳或星辰上经过。于是我们依据我们实际看到的情形说太阳或星辰上升或落下了。  约在每年3月21日前后,地球赤道的平面从太阳的北面到南面去,约在9月23日前后又从南而北。于是我们说太阳在3月经过赤道向北,在9月又经过赤道向南了。  在每年6月地球赤道的平面在太阳之南的最远处,在12月又在太阳之北的最远处。我们便说,在第一种情形中太阳在北至点,在第二种情形中在南至点了。  相对与地球轨道垂直的线,地球的自转轴倾斜了23.5度。眼见的结果便是黄道也对天球赤道倾斜23.5度了。  在六月及夏季的其他月份中,地球的北半球倾向着太阳这一边。被地球带着转的北纬度地区便在旋转一次中得太阳光的时间有一大半;而南纬度地区便只有一小半。在我们看来的结果便是每天太阳在地平线上的时间较长,我们过着炎热的夏季,而南半球则昼短夜长正是冬季。  在我们过冬的时候,这种情形便恰好反过来。南半球倾向着太阳,北半球远离太阳。结果,南半球上昼长夜短正是夏季,北半球上却轮到寒冷的冬季了。  (附注:如果我们从相对性原理出发,就很容易理解上述这些事实了。因为宇宙没有中心,而所有参考系对描述物理定律都是平权的,所以我们无法判断时空中哪个参考系是绝对参考系,所有运动都是相对的。)年与岁差(1)  我们区分年的办法最自然的是依地球环绕太阳一周的时间来定。按我们所说的看来,这种长短便有两种不同的度量方法。一是量出太阳经过同一颗恒星两次之间的时间。一是量出太阳经过春分点(或秋分点,即经过天球赤道)两次之间的时间。如果二分点是固定在众星之间不变位置的,这两种度量方法的结果便会完全相等了。但是古代天文学家根据千百年观察的结果发现,两者并不一致。太阳以恒星为起点绕天空一周比以春分点为起点绕天空一周要多费时约11分钟时间。这说明春分点是在众星之间一年一年的不停地移动位置了。这种移动便叫做“岁差”(the precession of equinoxes)。这也是与天上的东西毫不相干的,只是由于地球在环绕太阳时每年不断地慢慢移动地轴的方向而已。  我们假定图6中的地球一直旋转下去,经过六七千年转过六七千次后,我们就会发现那时地轴的北极不是向着我们的右方,却正对着我们这边了。再过六七千年它会转向我们的左方;然后再过同样长的时间,它就会背向着我们;而如果再过同样长的时间,也就是说约2.6万年以后,它又回到原来的方向了。  既然天极是依地轴的方向而定,这种地轴转向的结果自然也要使天极在天上绕一个圆圈了,这圈的半径约有23.5度。现在的北极星离北极约一度多一点。可是北极却渐渐接近它,直到约200年后又离它而去。1.2万年后北极要移到天琴座(Lyra)中,离该座的亮星——织女星(Vega)约有五度。在古希腊人的时代中,他们的航海者并不认得什么北极星,因为现在的北极星那时离北极还有10度到12度远,那时的北极在北极星与大熊座之间,那时的水手只能依靠大熊座定他们航行的方向。  从这看来,既然天球赤道是两天极正中间的大圈,它的在群星之间的位置便也不能不因此而有变动了。过去两千年间这种移动的情形表示在图9中。既然二分点就是天球赤道与黄道相交的两点,它们当然也得因此而移动了。这便是岁差(二分点的前移)的来历。  上述的两种年,一种叫做“恒星年”(sidereal year),另一种叫做“分至年”或“回归年”(tropical year)。回归年便是太阳两次回归二分点之间所用的时间,具体长短是365日5小时48分46秒。  因为四季是依太阳在天球赤道南北而定的,所以通常计算时间都用回归年。古代天文学家以为它的长短是365.25日。在托勒密(Ptolemy,生于公元2世纪的埃及天文学家)的时代中,算得更准一些,约为比365.25日少几分钟。当代差不多所有的文明国家都采用格列高里历(Gregorian Calendar),定出的年的长短和这非常相近。  恒星年是太阳两次经过同一恒星之间所用的时间,长度为365日6小时9分。依照基督教国家中一直沿用到1582年的罗马儒略历(Julian Calendar),一年的时间恰为365.25日。这就比回归年的真实长度要多出11分14秒来。因此四季便会在千百年中慢慢改变了。为了避免这一点,要有一个平均长度尽可能准确的年的制度,罗马教皇格列高里十三世(Gregory XIII)下了一道命令,在儒略历的四百年之间取消3次闰年。依儒略历,每一世纪的最后一年必为闰年。在格列高里历中,1600年仍为闰年,可是1500、1700、1800、1900都是平年。年与岁差(2)  格列高里历立即被所有天主教国家所采用,而新教国家亦渐次采用,因此它已成为世界通行的历法了(辛亥革命后,中国也是如此。)农历  在中国,除了格列高里历(俗称阳历),还有实行了数千年之久的农历。它是一种特殊的阴阳历,而不是纯粹的阴历。现在,中国百姓安排农事、渔业生产、确定传统节日,仍要用着它。  农历的月按朔望周期来定。月相朔(日月合朔)所在日为月初一,下次朔的日期为下月初一。因为一个朔望周期是29.53日,所以分大小月。大月30日,小月29日。某月的“大”、“小”、哪天是“朔日”,要根据太阳、月亮的真实位置来推算,古时候叫“定朔”。  农历的年,以回归年为依据。农历用增加闰月的方法(置闰的基本方法要根据24节气来定)使农历年的平均长度与回归年相近,并将岁首调整到“雨水”所在的月初。农历一年12个月,共354或355日。平均19年置 7闰月,使19年的农历与19年的回归年基本等长。所以一般来说,中国人19岁、38岁、57岁、76岁时的阳历生日和农历生日重合到一起。  农历岁首,自汉武帝太初元年(公元前104年)五月颁行的太初历以来,除个别朝代的皇帝有短期改动以外,一直以雨水所在月份为正月,该月初一为岁首。折射望远镜  在科学研究中没有比使用望远镜的工作更能吸引大众兴趣的了。我想读者也一定很想明确地知道望远镜究竟是什么,以及用望远镜又能看到些什么。这种工具的最完整的形式,例如天文学家在天文台上用的,是非常复杂的。可是其中有几个要点却只需细心一点加以注意便可大致体会。明白了这些要点以后,再去参观天文台,审视这些仪器时,便能比一个毫无所知的人得到更多的满足和知识。  我们都知道,望远镜的重要用途是使我们能把远处的东西看得近些;看一件若干千米以外的东西竟能仿佛是在几米之内。造成这种结果的光学工具就是用的一些很大的磨得很好的透镜——这种透镜跟我们所用的眼镜是一类的东西,只不过更大更精美罢了。收集从物体来的光至少有两种方法:一是让光通过许多透镜;二是用一凹面镜把光反射出来。因此我们有多种望远镜:一种叫做折射望远镜,一种叫反射望远镜,还有一种叫折反射望远镜。我们先从折射望远镜讲起。望远镜中的透镜(1)  一架折射望远镜中的透镜由两个系统组合而成:一个是“物镜”,用来在望远镜的焦点上形成远处物体的像;另一个是“目镜”,用来在人眼看得最清晰的地方形成新的像。  物镜才是望远镜中真正困难而且精巧的一部分。制造这一部分比其他所有部分加在一起都需要更多精巧的工艺。其中需要怎样大的天赋才能,我们只须举出一件事实来:二百多年以前,任何地方的天文学家都相信,全世界上只有一个人有能力制造巨大而精美的物镜,这人名叫阿尔凡?克拉克(Alvan Clark),不久我们就要提到他。  通常制成的物镜由两大透镜构成。望远镜的能力便完全依赖于这些透镜的直径,这便叫做望远镜的“口径”(aperture)。口径的大小不等,可以从家用小望远镜的10厘米左右,一直到叶凯士天文台(Yerkes Observatory)大型折射望远镜的1.02米。  要保证在望远镜中远处的物体有清楚的影像,最要紧的一件事便是物镜一定要把从该物体上任何一点来的光都集中到一个焦点上来。如果这一点办不到,不同处来的光也略微分散到不同的焦点上去,那么,那物体看起来就会很模糊,就好像从一副不合光的眼镜里去看东西一样。可是,单片透镜不管是用什么玻璃制造的,是不能把所有的光集中于同一焦点的。读者当然知道平常的光,不论是从太阳或是从星上来的,都是无数不同的颜色的混合,只要将它通过三棱镜便可分开来。这些颜色从红色的一头起一直排下去是橙、黄、绿、蓝、靛、紫。一个单片透镜会把不同颜色的光聚集到不同的焦点上去;红的离物镜最远而紫的最近。这种光线的分开叫做“色散”(dispersion)。  三百年前的天文学家都以为绝无办法避免透镜的色散作用。约在1750年,伦敦的多龙德(Dollond)发明了一个方法避免这种弊病,那就是利用两种不同的玻璃,一种是冕牌玻璃,一种是火石玻璃。这种方法的原理是非常简单的。冕牌玻璃的折光能力差不多跟火石玻璃一样,可是色散能力却差不多加大了一倍。于是多龙德用两块透镜做成了一副物镜,其中的一部分见图10。前面是一片冕牌玻璃的凸镜,这是普通的做法。与它连在一起的是一片火石玻璃的凹镜。既然这两透镜的曲度相反,便会使光向不同的方向射去。冕牌玻璃要把光集中于一点,火石玻璃的凹镜却要把光线分散。如果单用火石玻璃,我们便会看到光线通过它,不但不向一点集中,反要从一点向各方向渐渐散开。这片火石玻璃的聚焦能力制作得恰好比冕牌玻璃的聚焦能力的一半大一点。这一巧妙的设计已足可消去冕牌玻璃的色散了;却还不能消去它的折光能力的一半以上。联合的结果便是所有的光线通过,其中都差不多集中于一个焦点,但这焦点却要比单用冕牌玻璃时远了约一倍。  刚才说的“差不多集中于一个焦点”,是因为比较不幸:这两层玻璃组合起来还不能把所有各种颜色的光线绝对集中于同一焦点上。望远镜口径愈大,这种弊病愈严重。如果你从一架大折射望远镜中去看月亮或一颗亮星,一定会看到它们周围有一圈蓝色或紫色的晕痕。这两重透镜不能把蓝色或紫色光线也集中到和其他颜色相同的焦点去,由此而产生了称为“二级光谱”的像差。这是由一般光学玻璃的性质决定的,科学家们也没办法。目视用的折射望远镜所需的视场一般不大,二级光谱是它的主要像差,缩小相对口径可以减少它的不利影响。本书来自免费txt小说下载站更多更 新免费电子 书请关注望远镜中的透镜(2)  因为大型折射望远镜要求采用大块的透光性能优良的光学玻璃,这给制造带来困难。而且大型折射望远镜在紫外和红外波段的透光量比反射望远镜少、存在残余色差。它的架构的支持力也不如反射望远镜那么好,因此制造这种望远镜的花费要更大。这些都限制了它向更大的口径发展。当今世界上最大的折射望远镜的口径只有1.02米。  由于物镜的这种聚光于焦点的作用,远处物体的像便在焦平面上形成了。焦平面是通过焦点与望远镜的主轴或视线成直角的平面。  望远镜中所成的像是怎样的情形,你可以在照相师准备照相时去瞧一瞧他的照相机中的毛玻璃。你在那儿可以见到一副面孔或一张远景画在毛玻璃上。从各方面说来,照相机就是一架小望远镜,而毛玻璃,或者放感光片的地方,便是焦平面。我们还可以反转过来叙述这种情形,说望远镜是长焦距的大照相机,我们可以用它照天空的相片,正如同照相师用照相机照平常的相片一样。  有时候,我们可以通过明白一件东西不是什么而更充分地明白它是什么。两百多年前的著名的月亮大骗案中,有一点正好能这样帮助我们。那个作家用这样一个荒唐的故事欺骗了很多轻信的读者:赫歇耳爵士(Sir John Herschel)用极大放大倍率的望远镜观测月亮,竟然感觉没有充分的光足以看出那影像来了。于是有人向他建议用人工光来照明那影像。结果非常惊人——连月亮上的动物都在望远镜中看出来了。如果大多数的人——甚至连聪明绝顶的也算上——并没有被骗的话,我也就用不着说下面的话了:望远镜所成的像在本质上是外来的光线帮助不了的。原因在于它并非一幅真像(实像),而是由于远处物体的任何一点上的光线都相交在影像上相当的点上,再从该点散开,正像有一幅物体的图画在焦平面上一样而已。事实上图画这词也许比影像这词要略好一点来表示物体的显现情形,但这幅图画却只是由光聚焦而画成的,其间毫无他物——对于这样的像,我们称为虚像。  假若物体的影像(或说图画)恰好形成在我们眼前,那么大家也许要问:为什么看它还需要目镜?为什么观测者不能站在图画后面,向物镜望去,望见影像悬在空中?他实在可以这样做,只要他把一片毛玻璃放在焦平面上,像照相师对待照相机一样。他可以这么样去看影像显在毛玻璃上。他再向物镜望去,也就用不着目镜便可以看见物体了。可是在任何点上都只看得见一小部分,因此直接看物镜的好处也实在很少。要好好看还是得用目镜。目镜不过是一个小眼镜,从根本上说与钟表匠使用的眼镜是同类的。目镜的焦距愈短,观察愈精确。  常有人问:著名望远镜的放大倍率有多么大?答案是:望远镜的放大率不仅依赖物镜,也还要看目镜的。目镜的焦距愈短,放大率愈大。天文望远镜都有许多不同的目镜的,依观测者的需要而用。  在几何光学原理允许的范围之内,我们可以在任何望远镜(不论大小)上得到任何放大率。用一个平常的显微镜来看影像,我们可以使一个10厘米小望远镜拥有与赫歇耳的大反射望远镜同等的放大率。可是要使任何望远镜的倍率超过一定程度是有许多实际困难的:首先是物体表面发出的光很弱。假设我们用一个8厘米望远镜望土星,使它有数百倍的放大率,土星便显得黯淡不清楚了。但这还不是使小望远镜有高放大率的唯一困难。按照光学的一般定律,是不允许我们能把每2.5厘米口径的放大率提高到50倍以上,或者最多说也不能超过100倍的。这就是说,用一架2.5厘米口径的望远镜我们不能得到150倍以上放大率,更不用说超过300倍了。望远镜中的透镜(3)  可是还有一类困难特别使天文学家觉得不好办的。这就是由地球大气而产生的模糊,就是平常所说的看不清楚。  我们看天体是要透过一层厚厚的大气的。大气如果压缩到和我们周围的空气一样密,就会有十千米左右的厚度。我们知道,看一件10千米外的东西,会看到它的轮廓是模糊的。主要的原因就是光线所必须透过的大气永不停息地搅动,引起不规则的折射,使物体显得波状颤抖着。这样产生的轮廓柔化与模糊在望远镜中还要加上许多倍。结果,我们加大了放大率,同时也依同等比例加大了影像中的模糊。这种模糊程度的深浅大半只依赖于空气的情形如何。天文学家考虑到这个问题,于是为大望远镜寻找空气宁静的地方,以便观测的天体轮廓尽量清晰。  我们常见到一些计算说用高倍率大望远镜可以把月亮搬得多么逼近。譬如说,用一架1 000倍放大率的,我们看它似乎在400千米以外;用一架约5 000倍的,就似乎只在80千米之外了。这种计算倒是不错的,如果单从月亮上的任何东西的目视大小来说,望远镜的缺点以及大气扰动而带来影响,足以把这一切变得模糊不清。这两层毛病的结果使上述的计算不能切合实际。我很怀疑任何天文学家使用现有的任何望远镜来观测月亮或行星一类的东西时,把放大率加到千倍以上还能得到多大的好处,除非遇上了一个大气异常平静的机会。望远镜的装置(1)  那些根本未见过望远镜的人大概会以为使用望远镜观测天体是极其简单的事情,只需把望远镜对着某一天体,然后观测就是了。可是我们不妨试验一下这种办法,把望远镜指着一颗星,一件也许出乎我们意料的事立刻就会引起我们的注意。那颗星并没有静静地守在望远镜的视野(或者说望远镜中的小圆形的天空)中等我们去观测,却很快地逃了出去。这是因为地球绕自己的轴旋转,星辰便仿佛向相反的方向转了。这种运动的速度与望远镜的放大率同比例地加大。若用高倍率的望远镜,我们还未来得及观测时,星早已逃出我们观测的范围了。  现在我们必须记得我们从望远镜中所见的视野也是同样因为望远镜的放大作用而被缩小了的,因此它实际的观测范围比看起来要小得多,缩小的倍率正等于望远镜的放大倍率。举例说,如果用的是千倍的,那么普通望远镜的视野便会是约2分的角度,这一小块天空在肉眼看起来不过是一点罢了。这简直就像我们从一座6米高的屋顶上一个直径3.5厘米的小洞中去看星星一样。如果我们想象一下从这样的小洞中望星,便不难明白要找到一颗星并追随它的运动是多么难办的事了。  解决这问题的方法就是适当地装置望远镜,使它在互成直角的两轴上旋转。“装置”的意思是指整套仪器,借它的帮助我们可以使望远镜指定一颗星,并追随它的周日运动。我们不想一开始就讲述这种仪器的详细机理,以免分散读者的注意力。我们先来一个大纲,说明转动望远镜的两轴间的关系。主要的一根轴叫做“极轴”(polar axis),装得恰好与地球的轴平行,因此正对着天极。因为地球每天从西向东旋转,便有个装置连着这根轴,使它以同等的速度从东向西旋转。于是地球的旋转似乎被望远镜的相当的逆旋转抵消了。当望远镜指着一颗星而装置开始运动时,这颗星找着了以后就不会逃出视野去了。  为了使望远镜可以自由随意地指着天上任何一点,就必须有另一根与极轴成直角的轴。这便叫做“赤纬轴”(declination axis)。它上面有一鞘刚好安在极轴的前端,两者合成一个T字形。使望远镜在这两根轴上转动,我们可以使它指着任何我们要看的方向。  值得一提的是,中国汉代著名科学家张衡发明的浑天仪早就采用了类似的结构。浑天仪为球体模型,由一个轴贯穿球心,轴和球有两个支点,作为南极和北极。在球的外面套有两个圆圈,一个叫地平圈,另一个叫子午圈,交叉环套。天球半露在地平圈上,半隐在地平圈下。天轴支架在子午圈的上边。另外,在球体上还有黄道和天球赤道,互成24度交角。天球赤道和黄道上各刻有二十四节气,并且从冬至点起,刻分成365.25度,每度分四格,太阳每天辐射在黄道上移动1度。  既然极轴是与地轴平行的,它对地平的倾斜度就正好等于当地的纬度。在北纬较南部,它便几乎偏于水平而不垂直了。但在北方却又是偏于垂直的。  很明显,上述的装置还不足以解决将一颗星移入视野(或照通常说法,找到一颗星)的问题。我们也许会摸索寻觅几分钟、甚至几小时而不能成功。但是不要紧,找出星的方法还有如下两种:望远镜的装置(2)  每台天文望远镜都有另一小望远镜附在望远镜长筒的下端,这叫做“寻星镜”(finder)。寻星镜的放大率较低,因此视野较大。如果观测者能看见那颗星,便可从镜筒外找到目标再使寻星镜对着它,使它进入寻星镜的视野。在寻星镜中找到该星后再把星移到视野的中央。按照这个步骤做完之后,星也就在主镜的视野之中了。  但是天文学家所要观测的星大都是肉眼完全看不见的。因此他必须再有方法使望远镜对着肉眼所不能看见的星。这就要凭借分装在两轴上的划分度数的圆圈了。其中之一上面刻着度数及分秒,这便表示望远镜所指的那一点的赤纬。另一个装在极轴上,叫做时圈,分成24小时,每1小时又分成60分,以表示赤经。当天文学家要寻找一颗位置已知的星的时候,他只要先望一望恒星时钟,从恒星时中减去该星的赤经,便得到它的当时的“时角”(hour angle),或者说在子午圈偏东或偏西的距离。他再使赤纬圈对准该星的赤纬,这就是说,他转动望远镜使圈上的度数正等于该星的赤纬度;于是他在极轴上转动仪器,使时圈上也正好是该星的时角。然后开动导星器自动追踪星星,再向望远镜中望去,他所要找的星星便赫然在目了。  如果读者觉得这种办法太复杂,他只要到天文台去参观一下便可看出手续是多么简单了。那样一来,他就可以在几分钟内明白什么是恒星时、时角、赤纬以及这一类的名词了。这些实际的知识是要比任何纸上的描写要更容易使人明白的。望远镜的制造  现在我们来谈谈与望远镜制造有关的有趣的事,其中大半都是历史事实。我们已经说过,最大的困难、最需要天生的奇才的,便是制造物镜那一方面。只要对于正确的形式有一点极细微的差错——这毛病在物镜中只有0.00003厘米薄的一部分上——便会把像毁坏了的。  制成镜片(也就是说把镜片磨得准确)的磨镜师的本领还决不是所需要的全部。将大玻璃盘造得足够均匀与纯净也是同样困难的实际问题。玻璃的均匀程度稍差一点,就既不能用又不好看了。  在19世纪开始时,要把火石玻璃加工得足够均匀是个大困难。这种物质中含有大量的铅,在熔化玻璃的时候会沉下锅底,因此使下半面的折光能力比上半面大。结果,在当时,一架口径十几厘米的望远镜便要算是大望远镜了。就在当时,瑞士人奇南(Guinand)发明了一种方法制成大片的火石玻璃。也许他的成功只是由于在玻璃熔化时不停地加以有力的搅动而已。  要利用这些玻璃盘,还需一位有相当才能的磨镜师来把它磨光,使它恰好合用。慕尼黑(Munich)的夫琅和费(Fraunhofer)便是这样一个技师,他在1820年曾造过25厘米口径的望远镜。他并不止于此,在1840年又造了两架直径38厘米口径的望远镜。这些都是空前的产品,在当时曾被认为是奇迹。其中之一为俄国普尔柯沃天文台所得;另一架为哈佛天文台(Harvard Observatory)所得,直到五六十年后还可使用。  夫琅和费死后,在一个不知名的地方出现了一位杰出的后继者,麻省剑桥港(Cambridgeport,Mass.)的肖像画家克拉克。这个人几乎未受初步的专门技术教育,又未受运用光学器具的训练,却成就了伟业,这也足可证明天赋才能的重要了。他好像对于这问题的本质有天生的完整概念,又加以超人的锐利眼力,遂得以解决了问题。那种不可抗拒的思想(这恰好是天才的标志)驱使着他,从欧洲买来一些做小望远镜所必需的粗玻璃盘,造成了一副很令人满意的10厘米口径的望远镜。  当他透镜的卓越使他出名了以后,克拉克又开始制造一架空前巨大的折射望远镜。这便是在1860年左右完成的为密西西比大学而造的46厘米口径的大望远镜。这架望远镜完工尚待试验的时候,他的儿子乔治?克拉克(George B. Clark)曾用它在他的工厂中观测天狼星的伴星(因为这颗伴星对天狼星有引力,人们早知其存在,却还从未看见过它)。美国内战爆发后,密西西比大学未能得到这架望远镜,遂被芝加哥人买去。它曾经是埃文斯通(Evanston)的迪尔波恩天文台(Dearborn Observatory)的主要工具。大型折射望远镜  19世纪末,随着工艺水平的提高,各国关于光学玻璃的制造大加改良,随之出现了一个制造大口径折射望远镜的高潮。有不少的专家显现他们的才能,制成精美巨大的透镜。世界上现有的8架70厘米以上的折射望远镜,其中7架是在1885年到1897年期间建成的。它们中最有代表性的是1897年建成的口径102厘米的叶凯士望远镜和1886年建成的口径91厘米的里克望远镜。  英国陆续制造出越来越大的玻璃片,制造者是奇南的女婿费尔。克拉克用这些玻璃片制成更大的望远镜。第一个是为华盛顿的海军天文台造的66厘米口径的望远镜,还有一个大小相当的为弗吉尼亚大学而造。以后便是为俄国普尔柯沃天文台造的76厘米口径的望远镜。又为加利福尼亚的里克天文台(Lick Observatory)造了91厘米口径的望远镜。  费尔死后,玻璃制造的职务又由曼陀伊斯(Mantois)来继承,他所制的玻璃的纯净与均匀是此前无人能及的。他供给克拉克玻璃片,使克拉克得以为威斯康星(Wisconsin)的叶凯士天文台造成最大望远镜的物镜。这架望远镜直径有102厘米,现在仍是全世界最大的折射望远镜。    在机械方面也有了很大的改善。一个参观现代天文台的人是既要惊异于观测天象有那么便利,同时也要佩服观测的高明的。大望远镜安置得那么平稳,竟可以很容易用手推动,其迅速的运动也同样是由电机来控制的。当要移动望远镜到新的位置时,天文学家只需按一按电钮,望远镜便移动到新的位置上去了。圆顶也转过去使缝隙对着新的方向;观测者所站的地板也可随意起落,使观测者得以贴近目镜的新位置。而现代的光学望远镜则充分利用了电脑自动控制的便利,可以完全由电脑来自动控制,大大提高了大型望远镜的操作性和观察性。  有许多用大型望远镜的研究都要把目镜卸去,换上一套其他工具:有时是放一件装置底片的东西以便天象摄影研究,有时是一座分光镜以便分析天体的光,有时是一种特殊的装置来记录天体辐射的强度。望远镜的重要作用便是收集光,把光集中在一个焦点上,使人可以用上述或其他种种方法来研究。有的望远镜,例如威尔逊山天文台(Mount Wilson Observatory)的塔式望远镜是固定的。活动的镜子将天体的光一直引到望远镜上,再由望远镜将光集中于下面焦点上以便于实验室中的研究。反射望远镜(1)  我们已经知道,在折射望远镜中,物镜是一具透镜,或许多透镜的组合,安置在镜筒的上端。它将星光折射到接近镜筒下端的焦点上去,在那儿形成一个影像,这影像可以用目镜来看,可以摄影,也可以用其他方法研究。伽利略(Galileo)所用的最早的望远镜以及那个时代所用的望远镜都是折射望远镜。这种望远镜经过了消色方法改良后的形式仍有最普遍的用途。  在反射望远镜中,物镜是一凹镜,安置在镜筒最下端。它将星光反射到接近镜筒上端的焦点上去。现在发生了必须解决的困难:要看焦点上的像,观测者必须从上面向镜中望去。如果他俯在镜筒上看,他便要看到他自己的影子在镜中了。他的头和肩都会遮去大部分射来的星光。因此必须想出方法来使焦点到筒外去,才能充分测得星的像。不同的方法结果造成不同形式的反射望远镜。现在应用的有主焦点系统、牛顿系统、卡塞格林系统、格雷果里系统、折轴系统等。本章介绍其中两种:一是牛顿式(Newtonian),一是卡塞格林式(Gassegrainian)。  牛顿式反射望远镜将一面小镜斜放在镜筒中接近筒顶的焦点之内。这面镜的反光面正好和望远镜的主轴成45度角,从大镜射来会聚的光柱再向旁边反射到镜筒边上去。在那儿可以用平常的目镜来看,或者摄影。  因此,用牛顿式反射望远镜的观测口便在镜筒上端左边附近。观测者用目镜看去的方向正与他所观测的星星成直角。大型反射望远镜的观测台连在旋转圆顶上,正对着缝隙,很容易起落,使观测者能在适当的位置上去看望远镜所指向的任何方向。  卡塞格林式则有一较小的略显凸型的反射镜片放在主镜与其焦点之间。小镜把会聚的光柱再反射回去射向大镜,从大镜中央一小开口处通过,在镜后形成焦点,就在这儿安放目镜。用这种望远镜的观测者朝向他所观测的物体望去,正如同用折射望远镜一样。有许多反射望远镜是既可用成牛顿式,又可用成卡塞格林式的。  反射望远镜有许多优点,例如没有色差、观测波段宽、比折射望远镜更易制造等。但它也存在固有的不足:如口径越大视场越小,物镜需要定期镀膜等。现代的大口径光学望远镜大都是反射式的。  反射镜在三百多年前才广为采用,虽然其中的不同形式的原理已在更早五十年就由牛顿(Newton)、卡塞格林(Gassegirain)及其他人说明过了。威廉?赫歇耳爵士(Sir William Herschel)制造了不少的反射望远镜,还用了几架来考察天象。一百多年前,爱尔兰业余天文学家罗斯爵士(Lord Rosse)有一架直径1.8米的大反射望远镜,在当时已是巨无霸了。这架大望远镜为人们所知,尤其是因为它第一次看到了有些遥远天体的旋涡结构,那些天体后来就叫做漩涡星云。  早期反射望远镜的镜子是用金属盘(speculum meta)做成的。当镜面暗了的时候还须再磨光。赫歇耳、罗斯等人的大望远镜的机械部分相比现代的来说是非常粗糙的。它们并不能忠实地追随天体的西移运动,这对于摄影是十分关键的,或者说,其实在几乎所有现代天文观测中都是很重要的。反射望远镜(2)  约在二百年前金属才被玻璃代替。将圆玻璃的一面磨成所需要的形状是镜片的基础——它的曲面上则需镀一层极薄的银膜或铝膜。它对红外区和紫外区都有较好的反射率,适于在较宽的波段范围研究天体的光谱和光度。镀银(铝)面暗淡不明时,可以很容易换上新的。实用的反射望远镜,为了避免像差,视场一般比较小,为了扩大视场,常常增加像场改正透镜。对于反射镜的材料,只要求它的膨胀系数较小、应力较小和便于磨制。  1918年底,海尔主持建造的口径254厘米的胡克望远镜投入使用。天文学家用这架望远镜第一次揭示了银河系的真实大小和我们在其中所处的位置。而且,哈勃就是通过这台望远镜的观察提出了宇宙膨胀理论。  1930年代,胡克望远镜的成功激发了天文学家建造更大反射望远镜的热情。1948年美国帕洛马山天文台建造了口径508厘米望远镜,命名为海尔望远镜,以此纪念卓越的望远镜制造大师海尔。这架望远镜从设计到完工经历了二十多年,尽管比胡克望远镜分辨能力更强,但它并没有使我们对宇宙有更新的认识。正如阿西摩夫所说:“海尔望远镜就像半个世纪以前的叶凯士望远镜一样,似乎预兆着一种特定类型的望远镜已经快发展到它的尽头了。”1976年苏联在高加索建成了一架600厘米的望远镜,但它也没发挥多大作用,更加印证了阿西摩夫所说的话。折反射望远镜  折反射望远镜出现于1814年,顾名思意,它是由折射元件和反射元件组成的。哈密尔顿提出在透镜组中间加入反射面,以增加光焦度,这样就能用一般的玻璃得到色差改正比消色差物镜更好的望远镜。  1931年,德国光学家施密特别出心裁地用一块接近于平行板的非球面薄透镜作为改正镜,与球面反射镜配合,制成了可以消除球差和轴外像差的折反射望远镜。这种望远镜就是施密特望远镜,它视场大、像差小,适合于拍摄大面积的天区照片,尤其对暗弱星云的摄影效果非常突出。  1940年马克苏托夫制作出了另外一种折反射望远镜。它用一个弯月形状透镜作为改正透镜,制成了另一类折反射望远镜,它的两个表面是两个曲率不同的球面,相差不大,但曲率和厚度都很大。它的所有表面均为球面,比施密特望远镜的改正板容易磨制,镜筒也比较短,但视场比施密特式望远镜小,对玻璃的要求也高一些。  折反射望远镜特别适合于业余的天文观测和天文摄影。现在,施密特望远镜和马克苏托夫望远镜已经成了天文观测的重要工具。望远镜摄影术  天文学的最大进步之一便是摄影术在天体研究上的应用。回到19世纪40年代,纽约的德雷珀(Draper)成功完成了一张月亮的银板照相(daguerreotype)。利用更进步的发明,哈佛天文台的邦德(Bond)和纽约的卢瑟福(Rutherford)开始把这项技术应用到月亮星辰上面去。这些先驱的企图当然不能与现代的天体摄影相媲美,但是卢瑟福所摄的昴星团及其他星团的相片到现在还有天文学的价值,也就可见他们的成功了。  为星辰照相是可以用普通照相机的,只要我们把它安置得像一架赤道仪一样可以追随星辰的周日视运动。几分钟的曝光便可以拍摄到比肉眼所见更多的星了——事实上用大照相机的拍摄是连一分钟也用不到的。可是天文学家平时所用的却是一种摄影望远镜。普通摄影机自然也能用,只要加上相当的改善装置,但为了得到最好的效果起见,望远镜的物镜必须造得使紫光蓝光到同一焦点,因为这种光是摄影底片最敏感的。  为摄影而设计的折射望远镜常做得比同口径的目视望远镜要短些,为的是可以同时多见更大的天空。同时为了使大视野的像更清晰并减少颜色的模糊,其中的物镜常是两重的,便是所谓的“双分离物镜”(doublet)。例如巴纳德(Barnard)用来成功实现他的举世无双的银河及彗星摄影的布鲁斯双分离物镜(Bruce doublet)。而哈佛天文台的61厘米双分离物镜,曾经大大增加了我们对于南半天球的知识。只要物镜充分消去色散以后,折射望远镜是既可以目视又可用作摄影研究的。  在今日说来,摄影底片已大量的代替了眼睛用在望远镜上了。晴朗的天空被用作大量的摄影,而这些永久的记录又便于精密的研究。常常在一个特别有趣的天体(例如新行星或新星)发现以后,天文学家还可以在早先的该部分天空影片中寻找发现前许多年的历史。发现冥王星时的情形便是这样。  古代的天文学家记录太阳黑子、日食、行星、彗星、星云及其他天体的现象都用尽可能正确的图画。这些图画要长时间才能制成,其中还有艺术家个人的偏见。有时两位天文学家对同一天体的两张画竟互不相似,或者到后来又发现与原先的也大不相同。用摄影术我们可得到更真切的天体的影像,而且常常需要的时间更短。  天体摄影最大的优点是在长时间的曝光之后,底片上可得到许多肉眼看不大清楚或简直看不见的情形。譬如说,有些星云在照片中很明显,眼睛却在最大的望远镜中也不能看见。对一个极其黯弱的天体摄影需要若干小时的曝光,需要望远镜的活动部分移动得异常准确,需要天文学家的技术与耐性,这才能得到一张清晰的图画。  光电耦合器件CCD的应用,使照相底片也成为了历史。CCD可对天体进行实时观测,量子效率更高,拥有照相底片办不到的许多优点。大型光学望远镜  凯克望远镜(Keck I,Keck II)  凯克望远镜是当前世界上已投入工作的口径最大的光学望远镜,Keck I 和Keck II分别在1991年和1996年建成,它们配置完全一样,而且都放置在夏威夷的莫纳克亚,用于干涉观测。它的名字源于为它捐赠建造经费的企业家凯克(Keck?W? M)。  它们的口径都是10米,由36块六角镜面拼接组成,每块镜面口径均为1.8米,而厚度仅为10厘米,通过主动光学支撑系统,使镜面保持极高的精度。焦面设备有三个:近红外照相机、高分辨率CCD探测器和高色散光谱仪。  “凯克这样的大望远镜,可以让我们沿着时间的长河探寻宇宙的起源,甚至能让我们一直向回看,看到宇宙最初诞生的时刻。”  欧洲南方天文台甚大望远镜(VLT)  欧洲南方天文台自1986年开始研制由四台8米口径望远镜组成一台等效口径为16米的光学望远镜。这四台8米望远镜排列在一条直线上,它们均采用地平装置,主镜采用主动光学系统支撑,指向精度为1秒,跟踪精度为0.05秒,镜筒重量为100吨,叉臂重量不到120吨。这4台望远镜可以组成一个干涉阵,做两两干涉观测,也可以单独使用每一台望远镜。  大天区多目标光纤光谱望远镜(LAMOST)  LAMOST是中国正在兴建中的一架有效通光口径为4米、焦距为20米、视场达20平方度的中星仪式的反射施密特望远镜。它把主动光学技术应用在反射施密特系统,在跟踪天体运动中作实时球差改正,实现大口径和大视场兼备的功能。LAMOST的球面主镜和反射镜均采用拼接技术,并且采用多目标光纤的光谱技术,光纤数可达4 000根,而一般望远镜只有600根。  预计LAMOST将极限星等推到20.5等,比SDSS计划高2等左右,实现107个星系的光谱观测,把观测目标的数量提高1个量级。射电望远镜  1932年,央斯基(Jansky K. G.)用无线电天线探测到来自银河系中心人马座方向的射电辐射,从而标志着人类打开了在传统光学波段之外观测天体的第一个窗口。  射电望远镜在二战后带动了天文学的振兴。如上个世纪60年代时类星体、脉冲星、星际分子和宇宙微波背景辐射这些被称为天文学的四大发现均由射电望远镜担纲。射电望远镜的每一次长足的进步都让天文学向前迈进了一步。  1946年英国曼彻斯特大学建造了直径为66.5米的固定式抛物面射电望远镜,1955年又建成了当时世界上最大的可转动抛物面射电望远镜。  上世纪60年代,美国在波多黎各阿雷西博镇建造了直径达305米的抛物面射电望远镜,它是顺着山坡固定在地表上的,不能转动,这是世界上最大的单孔径射电望远镜。  1962年Ryle发明了综合孔径射电望远镜并获得了1974年诺贝尔物理学奖。综合孔径射电望远镜实现了由多个较小天线结构获得相当于大口径单天线所能取得的效果。  上世纪70年代,德国在波恩附近建造了100米直径的全向转动抛物面射电望远镜,这是世界上最大的可转动单天线射电望远镜。  上世纪80年代以来,欧洲的VLBI网、美国的VLBA阵、日本的空间VLBI相继投入使用,这是新一代射电望远镜的代表,它们在灵敏度、分辨率和观测波段上都大大超过了以往的望远镜。其中,美国的超长基线阵列(VLBA)由10个抛物天线组成,横跨从夏威夷到圣科洛伊克斯8 000千米的距离,其精度是哈勃太空望远镜的500倍,是人眼的60万倍。它所达到的分辨率相当于让一个站在纽约的人阅读位于洛杉矶的一张报纸。太空望远镜(1)  众所周知,地球表面有一层厚厚的大气,它们是地球的保卫者。地球大气中各种粒子主要通过对天体辐射的吸收和反射,使得大部分波段范围内的天体辐射无法到达地面。人们把能到达地面的波段形象地称为“大气窗口”,这种“窗口”有三个:光学窗口、红外窗口、射电窗口。大气对于其他波段,比如紫外线、X射线、γ射线等均是不透明的,在人造卫星上天后才实现这些波段的天文观测。  红外望远镜  最早的红外观测可以追溯到18世纪末。由于地球大气的吸收和散射造成在地面进行的红外观测只局限于几个近红外窗口,因此要获得更多红外波段的信息,就必须进行空间红外观测。从19世纪下半叶,红外天文学观测才真正开始。最初是用高空气球,后来发展到飞机运载红外望远镜或探测器进行观测。  1983年1月23日,美英荷联合发射了第一颗红外天文卫星IRAS。其主体是一个口径为57厘米的望远镜,主要从事巡天工作。IRAS的成功极大地推动了红外天文在各个层次的发展。直到现在,IRAS的观测源仍是天文学家研究的热点目标。  1995年11月17日由欧洲、美国和日本合作的红外空间天文台ISO发射升空。ISO的主体是一个口径为60厘米的R-C式望远镜,它的功能和性能均比IRAS有许多提高。与IRAS相比,ISO具有更宽的波段范围、更高的空间分辨率、更高的灵敏度(约为IRAS的100倍)以及更多的功能。  紫外望远镜  紫外波段介于X射线和可见光之间的频率范围,观测波段为3 100~100埃。紫外观测需要避开臭氧层和大气对紫外线的吸收,所以在150千米的高度才能进行。从最初用气球将望远镜载上高空观察,到以后用了火箭、航天飞机和卫星等空间技术才使紫外观测有了真正的发展。  1968年美国发射了OAO-2卫星,之后欧洲也发射了TD-1A卫星,它们的任务是对天空的紫外辐射作一般性的普查观测。被命名为“哥白尼”号的OAO-3卫星于1972年发射升空,它携带了一架0.8米的紫外望远镜,正常运行了9年,观测了天体的950~3500埃的紫外光谱。  1990年12月2~11日,“哥伦比亚”号航天飞机搭载Astro-1天文台作了空间实验室第一次紫外光谱上的天文观测;1995年3月2日开始,Astro-2天文台完成了为期16天的紫外天文观测。  1999年6月24日FUSE卫星发射升空,这是NASA的“起源计划”项目之一,其任务是要回答天文学有关宇宙演化的基本问题。  紫外天文学是全波段天文学的重要组成部分,自哥白尼号升空至今,已经发展了紫外波段的EUV(极端紫外)、FUV(远紫外)、UV(紫外)等多种探测卫星,覆盖了全部紫外波段。  X射线望远镜  X射线辐射的波段范围是0.01~10纳米,其中波长较短(能量较高)的称为硬X射线,波长较长的称为软X射线。天体的X射线是根本无法到达地面的,因此只是在人造地球卫星上天后,天文学家才获得了重要的观测成果,X射线天文学才发展起来。太空望远镜(2)  1962年6月,美国麻省理工学院的研究小组第一次发现来自天蝎座方向的强大X射线源,这使X射线天文学进入了较快的发展阶段。后来随着高能天文台1号、2号两颗卫星发射成功,首次进行了X射线波段的巡天观测,使X射线的观测研究向前迈进了一大步,形成对X射线观测的热潮。  γ射线望远镜  γ射线比硬X射线的能量更高,波长更短。由于地球大气的吸收,γ射线天文观测只能通过高空气球和人造卫星搭载的仪器进行。  1991年,美国的康普顿空间天文台(CGRO)由航天飞机送入地球轨道。它的主要任务是进行γ波段的首次巡天观测,同时也对较强的宇宙γ射线源进行高灵敏度、高分辨率的成像、能谱测量和光变测量,取得了许多有重大科学价值的成果。  CGRO配备了4台仪器,它们在规模和性能上都比以往的探测设备有量级上的提高,这些设备的研制成功为高能天体物理学的研究带来了深刻的变化,也标志着γ射线天文学开始逐渐进入成熟阶段。  哈勃太空望远镜(HST)  随着空间技术的发展,在大气外进行光学观测已成为可能,所以就有了可以在大气层外观测的空间望远镜(space telescope)。空间观测设备与地面观测设备相比,有极大的优势:以光学望远镜为例,望远镜可以接收宽得多的波段,短波甚至可以延伸到100纳米。没有大气抖动后,分辨能力可以得到很大的提高,空间没有重力,仪器就不会因自重而变形等等。  HST是由美国宇航局主持建造的四座巨型空间天文台中的第一座,也是所有天文观测项目中规模最大、投资最多、最受公众瞩目的一项。它筹建于1978年,设计历时7年完成,并于1990年4月25日由航天飞机运载升空。但是由于人为原因造成的主镜光学系统的球差,不得不在1993年12月2日进行了规模浩大的修复工作。这次修复非常成功,它的分辨率比地面的大型望远镜竟然高出了几十倍!它的接班人“韦布”预计于2010年发射升空。太阳系的最初一瞥(1)  现在,我们已经知道包括我们自己居住的行星在内的这一小群天体,是如何组成一个独立的小团体了。虽然对宇宙来说,这个渺小的团体是微不足道的,但是对于我们来说,却是生存的根本。在详细说明太阳系各个组成部分之前,我们先来浏览一下,看看这个小团体大致是由什么以及如何构成的。  首先我们要提到的是太阳。既然我们的小团体以它来命名,就足可以说明它的重要性了。这个在太阳系中央发光的巨大球体,不停地以惊人的速度把光和热辐射出去,并且用它强有力的引力来维持这个系统的运转。  其次则是那些行星。它们在有规则的轨道中环绕太阳——而我们的地球也是其中之一。行星(planet)这个词的本意是游移不定,古时给它们起这名字是因为它们不像恒星一样,在天空中守着相对固定的位置,却在恒星间游移不定。它们可以分为不同的两类,叫大行星与小行星(major and minor)  大行星一共8颗,是全太阳系中除了太阳外最大的物体。它们到太阳之间的距离按照远近不同,大致按照一种有规律的方式排列。从最近的水星(5 800万千米)到最远的海王星(约59亿千米)。水星绕太阳一周只要不到3个月,海王星在它遥远的路程却要花上近165年。  在太阳系的八大行星中,若按它们的质量大小和结构特征,又分为“类地行星”和“类木行星”两类——顾名思意,就是类似于地球或者是木星的两类行星。类地行星主要由石、铁等物质组成,体积小、密度大、自转慢、卫星少。水星、金星、火星都属于类地行星。而类木行星主要由氢、氦、冰、氨、甲烷等物质组成,体积大、密度低,自转相当快、卫星众多,还有由碎石、冰块或气尘组成的美丽光环。木星、土星、天王星、海王星都属于类木行星。  大行星分为两群,其间有一道很宽的空隙。内层的4颗类地行星大体上比外层的类木行星要小得多,这4颗行星合起来居然还够不上外层天王星的1/4大。  在两群之间的空隙中旋转的是小行星(asteroids)。和大行星比起来,它们真是渺小得很。它们几乎都在一条很宽的带中,相对太阳来说,这条带从离地球远一点点开始,一直到几乎十倍的地日距离为止。其中大部分约比地球离太阳远四五倍。它们跟大行星还有一点不同,就是数目众多;我们已知有编号的小行星已在10 000颗以上,而新的还在不断地被发现,使我们无从估计其总数。

回详情
上一章
下一章
目录
目录( 5
夜间
日间
设置
设置
阅读背景
正文字体
雅黑
宋体
楷书
字体大小
16
已收藏
收藏
顶部
该章节是收费章节,需购买后方可阅读
我的账户:0金币
购买本章
免费
0金币
立即开通VIP免费看>
立即购买>
用礼物支持大大
  • 爱心猫粮
    1金币
  • 南瓜喵
    10金币
  • 喵喵玩具
    50金币
  • 喵喵毛线
    88金币
  • 喵喵项圈
    100金币
  • 喵喵手纸
    200金币
  • 喵喵跑车
    520金币
  • 喵喵别墅
    1314金币
投月票
  • 月票x1
  • 月票x2
  • 月票x3
  • 月票x5