首页 宗教 历史 传记 科学 武侠 文学 排行
搜索
今日热搜
消息
历史

你暂时还没有看过的小说

「 去追一部小说 」
查看全部历史
收藏

同步收藏的小说,实时追更

你暂时还没有收藏过小说

「 去追一部小说 」
查看全部收藏

金币

0

月票

0

皇帝新脑-18

作者:罗杰·彭罗斯 字数:6651 更新:2023-10-09 12:35:10

(在第六章)。因为和大多数生理学家的观点相反,我相信量子现象似乎对大脑的运行是相当重要的——这些是下面几章的内容。迄今为止科学已取得了引人注目的成就。我们只要环视四周即可见证理解自然帮助我们取得了何等伟大的威力。现代世界的技术大多是从大量的经验中推导出来的。然而,正是物理学理论以更基本得多的形式成为我们技术的基础。这正是我们在此所关心的。我们的理论是相当精确的。但其力量并不仅仅在此,而且在于异乎寻常地遵从精密的、微妙的数学处理的这个事实。正是这两者一道为我们带来了威力无比的科学。这个物理理论的大部分并不特别新颖。如果首先要挑选一个事件的话,那应该是1687年伊萨克·牛顿出版了《原理》一书。这本重要著作向人们展示了,如何仅仅从几个基本的物理原理出发,能够理解并经常以惊人的精度预言了大量的物理对象的行为。《原理》一书中很大部分是关于数学技巧的非凡的发展,尽管欧拉等人后来提供了实用的方法。)正如牛顿所坦率承认的,他自己的工作大大得益于更早期思想家的成果,其中最杰出者为伽利雷·伽利略、雷奈·笛卡尔以及约翰斯·开普勒。还用了一些更古老的思想家们所奠定的重要概念,诸如柏拉图、欧多索斯、欧几里德、阿基米德以及阿波罗纽斯等人的几何概念。我在下面还要更多地说到这些。顿所坦率承认的,他自己的工作大大得益于更早期思想家的成果,其中最杰出者为伽利雷·伽利略、雷奈·笛卡尔以及约翰斯·开普勒。还用了一些更古老的思想家们所奠定的重要概念,诸如柏拉图、欧多索斯、欧几里德、阿基米德以及阿波罗纽斯等人的几何概念。我在下面还要更多地说到这些。姆斯·马克斯韦发展的电磁理论。这个理论不仅包括了电场和磁场,而且还描述了光的经典行为1!此一杰出的理论将是本章后面所关注的课题。马克斯韦理论对于今天的技术具有相当的重要性,并且毫无疑义地,电磁现象和我们大脑的工作密切相关。然而,和阿尔伯特·爱因斯坦名字联结的两种伟大的相对论对我们的思维过程是否具有任何意义,还没有这么清楚。亨利·彭加莱、亨德里克·安东·洛伦兹以及爱因斯坦为了解释当物体以接近于光速运动时所产生的使人迷惑的行为,从研究马克斯韦方程出发,提出了狭义相对论(后来赫曼·闵可夫斯基给出了精巧的几何描述)。爱因斯坦著名的E=mc2方程是该理论的一部分。但是迄今为止此理论对技术的影响(除了对核物理的效应之外)甚微,看来它和我们头脑工作的关联最多也只是外围的。另一方面,狭义相对论加深了我们对和时间本质有关的物理实体的理解。我们将会在后面几章看到,这给量子理论带来一些根本的迷惑,这些迷惑和我们对“时间流逝”的感觉有重要关系。况且,人们在鉴赏爱因斯坦的广义相对论之前必须理解狭义相对论。广义相对论是用弯曲的空间——时间来描述引力。迄今为止此理论对技术的效用几乎是不存在的①,看来极端地假设其对我们头脑的功能有何相关真有点异想天开了!然而,值得注意的是,广义相对论的确和我们后面特别是在第七章和第八章的思考关系重大。在那里为了探索要获得量子理论首尾一贯的图像所必须的一些变动,我们要最彻底地研究空间和时间,——这些在后面还要更仔细地讲到!经典物理学的领域很广阔。量子物理学的情况又如何呢?和相对论不同的是,量子理论正开始剧烈地影响技术。其部分原因在于,它为某些技术上诸如化学和冶金等重要领域提供了理解。人们的确可以讲,正是因为量子理论赋予我们新的详细的洞察力,才使这些领域被包含在物理之中。此外,量子理论还提供了许多全新的现象,我想最熟知的例子便是激光。量子理论的某些基本方面会不会在我们的思维过程的物理学中起关键的作用呢?我们关于更现代的物理学能说些什么呢?一些读者也许会想起那些激动人心的观念,包括诸如“夸克”(参阅177页)。“GUT”(大统一理论)、①王浩实际上考虑了稍微不同的问题——用方的花砖,不旋转,并且边缘颜色必须匹配,但是对我们这里这些差别并不重要。暴涨宇宙论(参阅402页的注释13)、“超对称”、“(超)弦理论”等等。将这些方案和我刚才提到的那些相比较又如何呢?我们是否也必须通晓这些呢?我相信,为了更清楚地透视,可将基本的物理理论分成三大类。我将这三类命名为:1.超等的,2.有用的,3.尝试的。本段之前所讨论的一切理论都必须归于超等类中。我并不强求只有该理论无可辩驳地适用于世界上的一切现象时才能称为超等的。但是,我要求在适当的意义上,该理论适用的范围和精确度必须是显著的。就我所理解的“超等”这个术语而言,居然会有属于这一类的理论存在,这真是极其令人惊异的事!我不知在其他科学中是否有理论可以归入这一类。也许达尔文和瓦拉斯提出的自然选择庶乎近之,但还差得相当远。我们在中学学到的欧几里德几何是一种最古老的超等的理论。古代人也许根本不将其当作一种物理理论,但实际上它的确是物理空间以及固体几何的卓越的理论。为何我将欧几里德几何归于物理理论而不是数学的一个分支呢?具有讽刺意义的是,现在我们知道,欧几里德几何不能当作我们实际生活其间的物理空间完全准确的描述,而这是采取这个观点的一个最清楚的原因!爱因斯坦的广义相对论告知我们,在引力场存在时,空间(——时间)实际上是“弯曲的”(也就是说不是完全欧几里德型的)。但是这个事实并没损坏欧几里德几何的超等的资格。在一米的尺度上,与欧几里德的平坦性偏差的确非常微小,它比一个氢原子的直径还小!阿基米德,帕波斯和斯蒂文研究静态物体,并将其发展成个漂亮的科学分支——静力学,该理论可以合情合理地够格称作是超等的。现在该理论已被牛顿理论所包容。1600年左右由伽利略提出,并由牛顿将其发展成美丽的、内容丰富的理论的,研究运动物体的动力学的根本观念,应该毫无疑问地纳入超等的范畴。把它应用于行星和月亮的运动时,具有惊人的可观察的精确性——其误差比一千万分之一还小。同一个牛顿的方案也以相当的精确性适用于地球以及外推到恒星和星系的范围。类似地,马克斯韦理论在向内可达到原子和次原子的粒子尺度,向外达到大约大一万亿亿亿亿倍的星系的尺度的异乎寻常的范围内准确地成立!(在此尺度的小的那一端,马克斯韦方程必须和量子力学的规则适当地合并在一起。)它也肯定够格被称作超等的。爱因斯坦的狭义相对论(为彭加莱所预想并被闵可夫斯基非常精巧地表述)对允许物体以接近光速运动的现象给出了令人惊叹地准确的描述。牛顿的描述最终在这种情况下开始动摇。爱因斯坦的无与伦比漂亮的和开创性的广义相对论推广了牛顿的引力动力学理论并改善了它的精确性,继承了牛顿理论处理行星和月亮运动的所有非凡的成就。此外,它还解释了各种和旧的牛顿方案不一致的观测事实。其中一个例子(参阅242页的双脉卫星的例子)指出爱因斯坦的理论能精确到大约1014分之一。两种相对论——第二种将第一种包含了——应该明确地归到超等的类中去(其数学上的优雅几乎和其准确性一样重要地作为这分类的原因)。由不可思议地漂亮的和革命性的量子力学理论所能解释的现象的范围,以及它与实验符合的精度,很清楚地表明它必须归至超等的类中去。迄今尚未找到与该理论在观测上的偏差——然而在用该理论解释许多迄今令人费解的现象方面,显示出其威力远远地超过这些。化学定律、原子的稳定性、光谱线的狭窄(参阅263页)以及非常特别的花样,超导的零电阻的古怪现象以及激光的行为仅仅是其中的几个例子。我给超等的分类立下了很高的标准,但这是我们在物理中已经习惯了的。那么,对于最近代的理论能说些什么呢?以我的观点看,恐怕其中只有一种或许够格被称为超等的,并且它还不是特别新的:即是所谓的量子电动力学(或QED)。它是由约丹、海森堡和泡利提出,1926至1934年间由狄拉克所表述,最终在1947至1948年间由贝特、费因曼、施温格以及朝永加以改进使之可以应用。这个理论是狄拉克将量子力学、狭义相对论、马克斯韦方程以及制约电子自旋和运动的基本方程结合在一起的结果。总的来说,该理论缺乏早先的许多超等理论的令人信服的精巧和一致性,但它的资格在于真正惊人的准确性。特别值得一提的结果是它给出了电子磁矩的值。(电子的行为类似于一个自旋的电荷的微小磁铁。此处“磁矩”即是这小磁铁的强度。)由QED计算出的这一小磁矩的值为1.00115965246(以某一单位测量——误差大约在最后二位小数上的20),而最近的实验值为1.001159652193(误差大约在最后二位小数上的10)。正如费因曼所指出的,其精确度等效于从纽约到洛杉矶之间相差一根头发的宽度!我们没有必要在此了解该理论。为了完整起见,我将在下一章的结尾简单地提到它的一些重要的特征①。我要将一些现代理论放到有用的范畴中去。有两种理论虽然在这里不需要,却值得提及。第一个是称为强子(质子、中子、介子等等组成原子核——或更准确地讲“强相互作用”的粒子)的次原子粒子的盖尔曼——兹维格夸克模型以及描述它们之间相互作用的详细的(后期的)称为量子色动力学或QCD的理论。其思想是,所有强子都由称作“夸克”的部份组成,夸克之间以从马克斯韦理论的某种推广(称为杨——米尔斯理论)的方式进行相互作用。第二种理论是由格拉肖、萨拉姆、瓦尔德和温伯格提出的,它又是利用杨——米尔斯理论将电磁力和描述放射性衰变的“弱”①一个“多项式”实际上是像7n4-3n3+6n+15这样的更一般的表示式,但是这并不增加我们的一般性。当n变大时,任何这类表示式中的所有包含n的更低方次的项都变得不重要(所以在我们的特例中,除了7n4项之外可不管其他的项)。作用结合起来。该理论对所谓的轻子(电子、μ子、中微子;还有W和Z粒子——所谓的“弱相互作用”的粒子)作出统一描述。这两种理论有好的实验支持。但是由于种种原因,这些理论远不如人们期望的像QED那么清爽,而且它们目前的观测精度以及预言能力离开超等类的惊人的标准还非常远。有时将这两种理论(第二种还包含QED)称作标准模型。最后,还有另一种我相信至少可归于有用的范畴的理论。这就是称为宇宙的大爆炸起源的理论①。此理论在第七章和第八章的讨论中将起重要的作用。我认为没有更多的理论属于有用的2范畴。现代(或近代)有许多盛行的观念。它们除了“GUT”理论(以及某些从它导出的观念,诸如“暴涨模型”,参阅402页的注13)外还有:“卡鲁查——克莱因”理论、“超对称”(或“超引力”)以及还极其时髦的“弦”(或“超弦”)理论。以我之见,所有这些都毫无疑义地属于尝试类中。(参阅贝娄1988,克罗斯1983,戴维斯和布朗1988,斯奎尔斯1985)。在有用和尝试类之间的重大差别是后者没有任何有意义的实验支持3。但是这并不是说,其中不会有一个将戏剧性地升格为有用的甚至超等的范畴去的理论。其中某些的确包含有许多相当有前途的、富有创见的思想,但是,可惜迄今仍然没有得到实验的支持,而只停留在观念阶段。尝试类是一个非常宽广的范畴。它们其中有些牵涉到包括能导致新的实质性的理解上的进步的基因,同时我认为其他的一些肯定是误导的或做作的。(我曾经受不了诱惑,试图从可尊敬的尝试类中分出称作误导的的第四类——但是后来我想还是不分的好,因为我不想失去我的一半朋友!)超等的理论主要是古代的,人们不必为此感到惊讶。在整个历史上一定有过多得多的归于尝试类的理论,但是多数都被遗忘了。与此相似,许多有用类的理论后来也被湮没了;但是也还有一些被吸收到后来归于超等类的理论中。让我们考虑一些例子。在哥白尼、开普勒和牛顿提出优越得多的方案之前,古希腊人提出过一个十分精巧的行星运动的称作托勒密系统的理论。按照这一方案,行星的运行由圆周运动的复杂组合所制约。它能相当有效地做预言,但是在需要更高的精度时,变得越来越繁复。今天我们看来,托勒密系统的的人为因素显得非常突出。这是一个有用理论(实际上大约用了两千年)后来整个退出物理理论的极好例子,虽然它曾在历史上起超过很重要的组织作用。相反地,开普勒的辉煌的椭圆行星运动的观念便是从有用的理论变成我们能见到的最终成功的例子。化学元素的门捷列夫周期表是另一个例子。它们并没有提供具有“惊人”特征的预言方①几乎是这样的,但也不完全;空间探测器行为所需的精度实际上需要在对它们的轨道计算时计入广义相对论效应——存在有能在地球上定位到如此精确(事实上达到几英尺)的仪器,以至于广义相对论的空间——时间曲率效应的确必须考虑在内!案,但是后来成为从它们成长出来的超等的理论的“正确”的推论(分别为牛顿动力学和量子理论)。案,但是后来成为从它们成长出来的超等的理论的“正确”的推论(分别为牛顿动力学和量子理论)。欧几里德几何欧几里德几何图5.1(a)欧几里德空间中的一个三角形。(b)罗巴切夫斯基空间中的一个三角形。的确还存在另外称作罗巴切夫斯基(或双曲)的几何①,它大部分方面非常像欧几里德几何,但还具有一些有趣的差别。例如,我们记得在欧几里德几何中任意三角形的三个角的和为180°。在罗巴切夫斯基几何中,这个和总是比180°小,并且这个差别和三角形的面积成比例(见图5.1)。著名的荷兰艺术家毛里兹·C·伊歇为这种几何给出了一种非常精细和准确的表象(见图5.2)。按照罗巴切夫斯基几何,所有的黑鱼具有相同的大小和形状;类似地,白鱼亦是如此。不能将这种几何在通常的欧几里德平面上完全精密地表达出来,所以在圆周边界的内缘显得非常拥挤。想象你自身位于该模型的某一靠近边界的地方,罗巴切夫斯基几何使你觉得就象位于中间或任何其他地方一样。按照这一欧几里德表象,该模型的“边界”正是罗巴切夫斯基几何中的“无穷远”。此处边界圆周根本不应该被看成罗巴切夫斯基空间的一部分——在圆周之外的任何其他的欧几里德区域就更不是了。(这一罗巴切夫斯基平面的天才表象应归功于彭加莱。它卓越的优点在于,非常小的形状在此表象中不被畸变——只不过它的尺度被改变。)该几何中的直线(伊歇鱼就是沿着其中某些直线画出的)即为与边界圆周作直角相交的圆弧。我们世界在宇宙学的尺度下,实际上很可能是罗巴切夫斯基空间(参阅第七章376页)。然而,在这种情形下,三角形亏角和它的面积的比例系数必须是极为微小。在通常的尺度下,欧几里德几何是这种几何的极好的近似。事实上正如我们在本章将要看到的,爱因斯坦的广义相对论告诉我们,在比宇宙学尺度小相当多的情形下,我们世界的几何的确与欧几里德几何有偏离(虽然是以一种比罗巴切夫斯基几何更复杂的“更无规”的方式),尽管这偏离在我们直接经验的尺度下仍是极为微小的。图5.2罗巴切夫斯基空间的伊歇图。(所有黑鱼和白鱼都认为是全等①参阅费因曼(1985)关于QED理论的通俗解释。作弄了我们(以及我们的祖先),使我们以为几何是逻辑所必须的,或以为我们有种先天的直觉的领悟,欧几里德几何必须适用于我们在其中生活的世界。(甚至伟大的哲学家伊曼努尔·康德也作此断言。)只有爱因斯坦在许多年以后提出的广义相对论真正地突破了欧几里德几何,欧几里德几何远非逻辑所必须的,它只是该几何如此精确地(虽然不是完全准确地)适合于我们物理空间结构的经验的观测事实!欧几里德几何确实是一个超等的物理理论。这是它作为纯粹数学的一部分的精巧性和逻辑性以外的又一个品质。在某种意义上,这和柏拉图(约公元前360年;大约在欧几里德著名的《原本》一书出版之前五十年左右)采纳的哲学观点相差不远。依柏拉图观点,纯粹几何的对象——直线、圆周、三角形、平面等等——在实际的物理世界中只能近似地得到实现。而那些纯粹几何在数学上的精确对象居住在一个不同的世界里——数学观念的柏拉图的理想世界中。柏拉图的世界不包括有可感觉的对象,而只包括“数学的东西”。我们不是通过物理的方法,而是通过智慧来和这个世界接触。只要人的头脑沉思于数学真理,用数学推理和直觉去理解,则就和柏拉图世界有了接触。这个理想世界被认为和我们外部经验的物质世界不同,虽然比它更完美,但却是一样地实在。(回顾一下我们在第三章113页和第四章129页关于数学概念的柏拉图实在性的讨论。)这样,可以单纯地用思维来研究欧几里德几何,并由此推导其许多性质,而外部经验的“不完美的”世界不必要刚好符合这些观念。基于当时十分稀少的证据,柏拉图以某种不可思议的洞察力预见到:一方面,必须为数学而研究数学,不能要求它完全精确地适用于物

回详情
上一章
下一章
目录
目录( 46
夜间
日间
设置
设置
阅读背景
正文字体
雅黑
宋体
楷书
字体大小
16
已收藏
收藏
顶部
该章节是收费章节,需购买后方可阅读
我的账户:0金币
购买本章
免费
0金币
立即开通VIP免费看>
立即购买>
用礼物支持大大
  • 爱心猫粮
    1金币
  • 南瓜喵
    10金币
  • 喵喵玩具
    50金币
  • 喵喵毛线
    88金币
  • 喵喵项圈
    100金币
  • 喵喵手纸
    200金币
  • 喵喵跑车
    520金币
  • 喵喵别墅
    1314金币
投月票
  • 月票x1
  • 月票x2
  • 月票x3
  • 月票x5