首页 宗教 历史 传记 科学 武侠 文学 排行
搜索
今日热搜
消息
历史

你暂时还没有看过的小说

「 去追一部小说 」
查看全部历史
收藏

同步收藏的小说,实时追更

你暂时还没有收藏过小说

「 去追一部小说 」
查看全部收藏

金币

0

月票

0

猜想与反驳-科学知识的增长-卡尔·波普尔-8

作者:卡尔·波普尔 字数:24872 更新:2023-10-09 12:27:16

还有一些相似的例子:“存在一种包医百病的药物;”或者“存在着一张拉丁文药方,如果按适当的程式表达出来,它能包医百病。”这里我们有了一个经验的不可反驳的陈述,我们中罕有人认为这个陈述是真的。这个陈述所以不可反驳,是因为显然不可能试验每一种可以设想出的拉丁文药方和每一种可以设想的表达方式的结合。因此,可能终究存在着一张神奇的、包医百病的拉丁文处方,这种逻辑上的可能性总是存在的。即便如此,我们也有理由相信这个不可反驳的存在陈述是虚假的。当然,我们无法证明它的假;但是,我们关于疾病所知道的一切都告诉我们,这个陈述不是真的。换句话说,虽然我们不能确定它的假,但猜想并不存在这种有魔力的拉丁文处方,比起那不可反驳的猜测即存在这种处方,要合理得多。几乎毋庸赘言,在差不多二千年里,饱学之士一直相信与此酷似的一个存在陈述是真的;这就是他们坚持不懈地寻找哲人之石的原因所在。他们没能找到哲人之石并没有证明什么,而这恰恰因为存在命题是不可反驳的。可见,一个理论的逻辑的或经验的不可反驳性,肯定不是一个认为这理论为真的充分理由,因此我证明了我有理由同时认为,这五个哲学理论是不可反驳的,并且它们是假的。大约二十五年以前,我正是通过把经验理论定义为可反驳的理论,把非经验理论定义为不可反驳的理论,由此把经验的或科学的理论同非经验的或非科学的理论区分开来。我所以这样提议,理由如下。对一个理论的每一次严格检验,都是一种反驳它的尝试。所以,可检验性和可反驳性或可证伪性是同一个意思。既然我们只应该把能够经验地加以检验的那种理论称作“经验的”或“科学的”理论,所以我们可以得出结论:正是经验反驳的可能性使经验的或科学的理论显出其特色。如果接受这种“可反驳性标准”,那么我们立即可以看出,哲学或形而上学的理论根据定义将是不可反驳的。我的断言即我们的五个哲学理论都是不可反驳的,现在听起来似乎平淡无奇。同时,很显然,虽然我是个理性主义者,但我决不会在有理由称这些理论为“假的”以前去反驳它们。这把我们带到我们的中心问题:如果哲学理论全都是不可反驳的,那我们怎么能区分真的和假的哲学理论呢?这是哲学理论的不可反驳性所引起的重要问题。为了更清楚地说明这个问题,我想把它重新表述如下。这里我们可以区分三种类型理论。第一,逻辑和数学的理论。第二,经验和科学的理论。第三,哲学或形而上学的理论。在这每一组中,我们怎么能区分真实理论和虚假理论呢?对第一组,回答是显而易见的。每当我们发现有一个数学理论,我们不知道它是真还是假时,我们总是通过试图反驳它来检验它,先是在表面上检验,然后比较严格地检验。如果我们失败了,那就试图去证明它,或者反驳它的否定。如果我们又失败了,那么,对这理论真理性的怀疑就有可能重新抬头,我们将试图再次反驳它,如此等等,直至我们得到一个结论,否则,便把这个问题搁置起来,因为它太难了,无法解决。这种情况还可以描述如下。我们的任务是对两个(或更多个)相竞争的理论进行检验和批判的考察。我们通过试图反驳它们(这一个或那一个),直到得出结论,由此完成这个任务。在数学中(但仅仅在数学中)这种结论一般说来是最后的结论:罕有不正确的证明能蒙混过去不被发觉。如果我们现在来看看经验科学,那么我们发现,我们通常遵循基本上相同的程序。我们再次来检验我们的理论:我们批判地考察它们,试图反驳它们。惟一重要的差别是:现在我们在批判考察中还能利用经验论据。但是,这些经验论据只是连同其他批判性考虑一起出现。批判思维本身现在仍是我们的主要工具。只有当观察适合于我们的批判讨论时,才能利用观察。现在,如果我们把这些考虑运用于哲学理论,那么我们的问题可以重新表述如下:不可反驳的哲学理论能批判地加以考察吗?如果这是可能的,那么,对一个理论的批判讨论不是在于试图反驳这理论,又可能是什么呢?换言之,一个不可反驳的理论能合理地即批判地加以评价吗?我们能引证什么合理的论据来支持或反对一种我们明知不可论证、不可反驳的理论呢?为了举例说明对我们问题的各种不同表述,我们可以首先再来讨论决定论的问题。康德完全知道,我们不能像预言日蚀一样精确地预言人类的将来活动。但是,他用来解释这种差别的是下述假定:我们对一个人的现状——他的希望和恐惧、感情和动机——的了解远不如我们对太阳系现状的了解。这个假定隐含着下述假说:“存在着对这个人现状的真实描述,它足以(同真正的自然规律一起)预言这个人的将来活动。”这当然又是一个纯粹的存在陈述,因此是不可反驳的。尽管事实如此,我们能否合理地批判地讨论康德的论证呢?作为第二个例子,我们可以考虑这个命题:“世界是我的梦。”虽然这个命题是显然不可反驳的,但罕有人会相信它是真的。但是,我们能否合理地批判地讨论它呢?它的不可反驳性对于任何批判讨论来说是不是不可逾越的障碍呢?至于康德的决定论学说,或许可以设想,对它的批判讨论可以下面的话作为开头:“亲爱的康德,仅仅断定存在着一个非常具体、足以使我们能够预言将来的真实描述,那是不够的。你必须做的事是,确切地告诉我们这个描述包括哪些东西,以便我们经验地检验你的理论。”然而,这段话等于假定:哲学的(即不可反驳的)理论决不可加以讨论,而负责的思想家注定要用可经验地检验的理论取代它们,以便能够进行合理的讨论。我希望,我们的问题到现在已经变得很清楚了;因此,现在我开始对这个问题提出一个解决办法。我是这样解决的:如果一个哲学理论只不过是一个对世界的孤立的断定,突然地出现在我们面前,隐含地要求我们“要么接受要么放弃”,和其他别的东西又没有什么联系的迹象,那么,这个哲学理论确实是无法讨论的。但是,对一个经验理论也可以这么说。如果有人不先向我们解释牛顿理论要想解决的是什么问题,就向我们提出牛顿的方程,甚或牛顿的论据,那么我们就无法合理地讨论它的真理性,就像不能讨论《启示录》的真理性一样。如果没有关于伽利略和开普勒的结论的知识,没有关于这些结论所解决的那些问题的知识,没有关于用一种统一理论解释伽利略和开普勒的答案这个牛顿的问题的知识,我们就会发现,牛顿理论也正像任何形而上学理论一样,是无法讨论的。换句话说,每个合理的讨论,无论是科学的或哲学的,就它试图解决某些问题而言,是合理的。一个理论仅就它同一给定的问题状况有关系而言,才是可以理解的和合理的,并且只有讨论这种关系,这一理论才得到合理的讨论。如果我们把一个理论看作对一组问题提出的解答,那么,这理论立即就适合于作批判讨论——即使它是非经验的和不可反驳的。因为现在我们可提出这样的问题:这个理论解决了这问题吗?这个理论比其他理论更好地解决了它吗?或许它只是转变了这问题吧?这种解决简单吗?它有成果吗?或许它和解决其他问题所需要的别的哲学理论相矛盾吧?这类问题表明,甚至对不可反驳的理论作批判讨论也完全是可能的。让我再举一个具体的例子:贝克莱或休谟的唯心主义(我已用一个简化的公式即“世界是我的梦”来代替它)。值得注意的是:这些作者根本不打算提供给我们如此荒唐的理论。这一点可以从贝克莱一再坚持说的话看出:他的理论实际上和正确的常识相一致。[10]如果我们试图理解导致他们提出这理论的问题状况,那么我们就会发现,贝克莱和休谟都相信,我们的一切知识都可归结为感觉印象、记忆形象间的联想。这种假设致使这两位哲学家采取唯心主义;特别是就休谟而言,他是非常不得已地采取这种观点的。休谟所以是个唯心主义者,仅仅是由于他企图把实在论归结为感觉印象的努力遭到了失败。因此,通过指出休谟感觉主义的知识理论和学习理论无论如何是不恰当的,并指出不带来讨厌的唯心主义结果的较恰当的学习理论是存在的,这样来批判休谟的唯心主义是完全合理的。我们现在能够用相似的方式合理地和批判地讨论康德的决定论了。从根本的旨意看,康德是个非决定论者:即使作为牛顿理论的一个必然结果,在涉及现象世界时他相信决定论,但他决不怀疑,人类作为一种有道德观念的存在物,并不是决定的。康德对产生于他的理论哲学和实践哲学之间的冲突,从未作出过他本人完全满意的解决。因此,他对找到一种真正的解决感到绝望。在这种问题状况的背景中,就有可能批判康德的决定论。例如,我们可以问:它是否真的从牛顿理论推出。让我们暂时猜想不是这样。我不怀疑,对这一猜想的真理性的一个清晰证明会使康德放弃他的决定论学说——即使这学说恰恰是不可反驳的,即使由于这个缘故康德也不会在逻辑上被迫取消这个学说。非理性主义同样如此。非理性主义最初随着休谟进入理性哲学。读过休谟这位冷静的分析家著作的人,不会怀疑非理性主义并非休谟的原旨。它是休谟下述信念的意外结果:事实上我们借助于同休谟逻辑证明相结合的培根归纳法而认识到:理性地为归纳法辩护,是不可能的。“对于理性证明来说那就更糟了”,是休谟无可避免地从这种情境得出的一个必然结论。他正直地接受了这个非理性结论,而这种正直是真正理性主义者所特有的,他们不会在令人不快的结论面前退缩不前,如果它对他来说是不可避免的话。然而,在这种情况下,它不是不可避免的,虽然它在休谟看来是如此。事实上我们并非是休谟所认为的那种培根归纳机器。习俗或惯例在学习过程中并不像休谟认为的那样起作用。这样一来,休谟的问题连同他的非理性主义结论一起消释了。后康德非理性主义的情况与此有点相似。特别是叔本华,他和非理性主义是真正对立的。他只抱着一种欲望写作:让人理解;他写的东西比任何其他德国哲学家都明白易懂。他之致力于让人理解,使他成为少数几位德国语言大师之一。但是,叔本华的问题是康德的那些形而上学的问题——现象世界中的决定论问题、自在之物的问题和我们自己作为一个自在之物世界的成员的问题。他以典型的理性方式解决了这些问题——超越一切可能经验的问题。但是,这种解决注定是非理性的。因为,叔本华是个康德主义者,因此他相信康德的理性界限:他相信,人类理性的界限和可能经验的界限是一致的。但是,这里又存在着其他一些可能的解决。康德的问题能够而且必须加以修改;这种修改应取的方向已由他那批判的或自我批判的理性主义的基本观念所指明。一个哲学问题的发现可能是最终的,它是一劳永逸的。但是一个哲学问题的解决却决不是最终的。它不可能建基于一个终极的证明或终极的反驳之上:这是哲学理论的不可反驳性的一个结果。这种解决也不可能建基于使人激励(或使人厌烦)的哲学预言的魔术般的程式之上。然而,它可以建基于对一种问题状况、它的基本假设以及它的各种可能解决方法的认真的和批判的考察之上。--------------------------------------------------------------------------------[1] 为柏林广播自由大学而写的两篇广播淡话;最初刊登于《理性》,1958年第1期,第97-115页。[2] 1756年拉丁文的《自然单子论》(Physical Monadology)也非常重要。康德在这本书中预言了博什·科维奇的主要思想;但康德在他1786年的著作里否定了他在《单子论》中提出的物质理论。[3] 从伯特兰·罗素的《心的分析》(The Analysis of Mind),1922年,第95页以下,可读到类似的考虑。[4] 比较亚里土多德《论天》,293b1-5,那里批判了主张宇宙中心是“珍贵的”,因此要由中心火来占据的学说,并把它归诸“毕达哥拉斯学派”(这也许指它的对手,尚在学院里的柏拉图后继人)。[5] 我认为阿瑟·凯斯特勒在他的杰作《梦游者》(The Sleepwalkers)中对伽利略作的批判,因没有考虑到这里讲到的学派分裂而有所逊色。伽利略正确地想看看他在理性主义框架里能否解决这些问题,就像开普勒想在占星术框架里解决这些问题—样。关于占星术思想的影响,亦见本书第54页注②。[6] 原文没用着重号。[7] 参见爱因斯坦在他的赫伯特·斯宾塞演讲《论理论物理学的方法》(On the Method of Theoretical Physics)中自己所作的表述,他写道:“正是广义相对论表明……我们可能用和牛顿迥异的基本原理,去判定全部经验资料……”[8] 《实践理性批判》(Kritik der praktischen Vemunft),第4版至第6版,第172页;《康德著作集》,卡西勒编,第v卷,第108页。[9] 参见朱利叶斯·克拉夫特:《从胡塞尔到海德格尔》(Von Husserl zu Heidegger),第2J版,1957年,如第103页以下,136页以下,特别是130页,克拉夫特在那里写道:“因此,从认识论的角度看,很难理解存在主义怎么能被认为是一种哲学上的新东西。”亦见H.廷特的令人鼓舞的论文,载《亚里士多德学会会议录》1956-1957年卷,第253页以下。[10] 这一点也可以从休谟坦率的承认中看出:“无论此时此刻这位读者的观点如何,……一小时后他就会被说服,存在着一个既是外部的也是内部的世界。”(《人性论》,1,Ⅳ,第2节结尾部分;塞尔比-比格,第218页。)目录页 冥王E书?2004上一页 下一页目录页 卡尔.波普尔《猜想与反驳》上一页 下一页九、逻辑演算和算术演算为什么可应用于实在[1]赖尔教授的文章[2]局限于讨论逻辑规则的适用性,或者更确切地说,讨论逻辑推理规则。我打算跟着他讨论这个问题,只是到后面把讨论扩展到逻辑演算和算术演算的适用性。可是,我刚才作出的逻辑推理规则和所谓的逻辑演算(像命题演算、类演算或关系演算)的区别还需要作些澄清,我将在第i节里先讨论推理规则和演算之间的区别和联系,然后再讨论我们面临的两个主要问题:推理规则的适用性问题(第ii节里)和逻辑演算的适用性问题(第viii节里)。我将间接提到和利用一些赖尔教授论文中的思想,以及他向亚里士多德学会作的主席致词:《认识的方法和认识的对象》(1945年)中的思想。[3]I让我们考虑用某种语言例如普通英语表述的论证或推理的一个简单例子。这个论证将由一系列陈述构成。我们可以假定,某人论证说:“雷切尔是理查德的母亲。理查德是罗伯特的父亲。父亲的母亲是祖母。因此,雷切尔是罗伯特的祖母。”最后一句中的“因此”可以被看作一种指示,表明说话者声称,他的论证是确凿的或者正确的;或者换句话说,最后的陈述(结论)是正确地从前面三个陈述(前提)推出的。他的这种说法,可以是正确的,也可以是错误的。如果他在作这类声称时通常都是正确的,那么我们可以说他懂得怎样论证。他也可能懂得怎样论证,但不能够用语词向我们解释他所遵循(和其他懂得怎样论证的人一样遵循)的这个程序的规则;正如一个钢琴家可能懂得怎样演奏得出色,但不能解释精湛演奏所服从的程序的规则。如果一个人懂得怎样论证,但并不总是意识到程序的规则,那么我们通常总说他是“直觉地”论证或推理。如果我们现在读完了上述论证,那么,我们也许能够直觉地说,这个论证是正确的。几乎没有疑问,我们大多数人通常都在上述意义上直觉地进行推理。表述和讨论日常直觉论证所服从的程序的规则,是一种非常专门和复杂的研究;那是专门属于逻辑学家的工作。每个有健全理智的人都懂得怎样论证——假如论证不是过于复杂的话——但是,很少有人能够表述这些操作所服从的规则,而这些规则我们可以称作“推理规则”;也很少有人知道某个推理规则是正确的(知道它为什么是正确的人也许还要少)。利用变项和少数几个其他人工符号,上述论证所服从的特定推理规则可表述为下面图式:[4]从以下形式的三个前提:“xRy”“ySz”“R'S=T”可以推出以下形式的一个结论:“xTz”。这里,任何个体的专名都可以代入“x”、“y”和“z”,任何个体间关系的名称都可以代人“R”、“S”和“T”;任何断定x和y等等之间关系及成立的陈述,都可以代入“xRy";当且仅当存在一个y,以致xRy并且ySz,则x和z之间成立的一个关系的任何名称都可以代入“R'S”;“=”在这里表示关系之间外延上的相等。应该注意,这条推理规则构成了对某一类或某一形式的陈述的断定。这事实迥异于一种演算(在这里是关系演算)的一个公式,例如:“对一切R、S和T;且对一切x、y和z:如果xRy,并且ySz,并且R'S=T,那么,xTz。”无疑,这个公式和我们的推理规则有所相似;事实上,它是对应于我们推理规则的那个陈述(在关系演算中)。但是,它们并不是一回事:这公式有条件地对某一类的一切关系和个体有所断定,而推理规则五条件地对某一类的一切陈述有所断定,也即某种形式的每一个陈述都可无条件地从另一种形式的一组陈述推出。同样,我们应该区分例如传统逻辑的推理规则(称作“Bar-bara”"):“MaP”“SaM”-------------“SaP”和类演算的公式:“如果MaP并且SaM,那么,SAP”(或者用比较现代的写法:“如果c b并且a c,那么a b”);再如,区分那个称为“命题逻辑的推理原则”的推理规则或肯定前件假言推理:P如果P,那么q-------------------q和命题演算的公式;“如果P,并且如果P那么q,那么,q。”事实上,对每个众所周知的推理规则,都与之相应地有个众所周知的演算公式,一个逻辑上真的假言或条件公式——一个“逻辑学家的假言公式”(就如赖尔教授所称的那样)。这种情况导致把推理规则和相应的条件公式混淆起来。但是,它们之间存在一些重要的差别。(1)推理规则总是关于陈述的陈述,或关于陈述类的陈述(它们是“元语言的”);而演算公式并非如此。(2)推理规则是关于可演绎性的非条件陈述;但相应的演算公式则是有条件的或假言的即“如果……那么”的陈述,而它们并没有涉及可演绎性、推理、前提或结论。(3)一个推理规则,在用常项代人变项以后,就对某个论证(对这规则的“遵守”)有所断定,就是说,断定这论证是正确的;但是,相应的公式在代换以后,产生的是一个逻辑的自明之理,即一个像“所有桌子都是桌子”这样的陈述,尽管呈假言形式,例如“如果它是一张桌子,那么它是一张桌子”,或者“如果一切的人皆要死,并且一切希腊人都是人,那么,一切希腊人皆要死”。(4)在按照某些推理规则作出的那些论证里,这些推理规则决不可用作为前提;但是,相应的演算公式则是以这种方式使用的。事实上,构造逻辑演算的主要动机之一是:通过把“逻辑学家的假言式”(即那些相应于某条推理规则的假言的自明之理)用作为一个前提,我们能够去除相应的推理规则。利用这种方法,我们能够去掉所有不同的推理规则——不包括上面提到的一条“推理原则”(或者两条,如果我们利用“代换原则”的话,但它是可以避免的)。换句话说,建立一种逻辑演算的方法就是系统地把大量推理规则简约为一条(或两条)的方法。所有其他规则都由演算公式取代;这样做的好处是:所有这些公式(事实上是无限多)本身都能够系统地从为数甚少的公式推导(利用“推理原则”)出来。我们已经指出,对每个众所周知的推理规则,在一个众所周知的逻辑演算中都存在一个断定的(或可证明的)公式。一般说起来,这里逆关系不成立(尽管对假言公式还是成立的)。例如,对于公式“P或非P”;或者“非(P和非P)”;以及对于许多其他非假言公式,并不存在相应的推理规则。因此,必须仔细地区分推理规则和逻辑演算公式。但是,这不必妨碍我们把这些公式的某个子集——“逻辑学家的假言式”——解释为推理规则。事实上,对每个这样的假言公式,都存在相应的推理规则,我们的这个断言证明了这样的解释是合理的。Ⅱ在这带点专门性的开场白以后,现在我们转到讨论赖尔教授对“为什么推理规则适用于实在?”这个问题的研讨。这个问题构成我们的原始问题的一个重要部分,因为我们刚才已看到,逻辑演算公式的某个子集(即赖尔教授所称的“逻辑学家的假言式”)可以解释为推理规则。如果我理解得正确的话,赖尔教授的中心命题是:逻辑规则,或更确切地说,推理规则,是程序的规则。这意味着,它们适用于某些程序,而不是事物或事实。如果我们说的“实在”是指例如科学家和历史学家描述的事物或事实的话,那么,这些规则并不适用于实在。它们之不“适用”于实在是从下述意义上说的:一个描述,比如对一个人的描述,既可以运用于或适合于被描述的这个人,也适用于另一个人;或者,一个描述理论,例如核子共振吸收理论可以适用于或适合于铀原子。相反,逻辑规则适用于进行推理的程序,可以和公路规章适用于骑自行车或驾驶汽车的程序相比拟。逻辑规则可以被遵守或违反,运用逻辑规则并不意味着使它们去适合,而是意味着遵守它们,按照它们行动。如果错误地想用问题“为什么逻辑规则可适用于实在?”去意指“为什么逻辑规则适用于我们世界的事物或事实?”那么,答案应该是:这个问题假定了逻辑规则能够而且实际上适合于事实。然而,预言逻辑规则“适合于世界的事实”或者“不适合于世界的事实”是不可能的。这就像不可能对公路规章或像棋规则作这种预言一样。因此,我们的问题似乎不存在了。那些怀疑为什么推理规则适用于这个世界、因而徒劳地企图想象一个非逻辑的世界大概是什么样子的人,是一种含糊不清的语意的牺牲品。推理规则是程序性规则或执行的规则,因此它们不可能在“适合”的意义上“适用”,而只能在被遵守的意义上适用。因此,一个它们不适用的世界不会是个非逻辑的世界,而是个住满了非逻辑的人的世界。这样的分析(赖尔教授的分析)在我看来是正确的,并且是重要的,它很可能指明了可以找到我们问题的一个答案的方向。但是,我并不相信它本身提供了一种解决。我认为,事情是这样的。赖尔教授的分析表明,解释这个问题的一种方式是把它归结为胡说八道,或者归结为一个假问题。多年来,我一直把不轻易满足于将一个问题归结为假问题奉为一条个人的程序规则。每当某人成功地把一个问题归结为假问题时,我总是问我自己,是否不能找到对这个原始问题的另一种解释——这种解释(可能的话)表明除了这假问题而外,这原始问题的后面还有个真正的问题。我在许多场合发现,这种程序规则是富于成果的和成功的。我完全承认,企图把原始问题归结为假问题的分析常常可能是极其宝贵的;它可能表明,存在一种思维混乱的危险,并且它常常可能有助于我们去发现那真正的问题。但是,它并未解决这问题。我相信,这一切也适合于这里。Ⅲ我接受赖尔教授的观点:逻辑(或推理)规则是程序的规则,并如他所指出的那样,它们可以看作为好的、有用的或有帮助的程序规则。我现在认为,“为什么逻辑规则适用于实在?”的问题可以解释为意指“为什么逻辑规则是好的、有用的或者有帮助的程序规则?”这种解释的合理性,是无可反驳的。一个人之所以在遵照逻辑规则行动的意义上,或如赖尔教授所说,在遵守它们的意义上运用逻辑规则,可能是因为他发现这些规则在实践上是有用的。但这最终意味着,他发现这些规则在处理实在情境即处理实在时是有用的。如果我们问,“为什么这些规则是有用的?”那么,我们的提问酷似“为什么它们是适用的?”这个问题。我认为,这种相似性足以使人声称,这很可能是原来的提问者心里想的东西。另一方面,无疑我们的问题不再是个假问题了。Ⅳ我相信,我们的问题能够较容易地回答。我们已经看到,发现遵循逻辑规则有用的人就是进行推理的人。这就是说,他从一些称为“前提”的对事实的陈述或描述得出另一些称为“结论”的对事实的陈述或描述。他发现这程序有用,是因为他发现,每当他遵守逻辑规则,不管是自觉地还是直觉地,这结论就会是真的,如果前提是真的话。换句话说,如果原始信息是可靠的和有价值的,那么,他将能够得到可靠的(可能也是有价值的)间接的信息。如果这是正确的,那么,我们必须把我们的问题“为什么逻辑规则是好的程序规则?”换成为另一个问题,即“如果前提是真的,逻辑推理规则就总是导致真实结论,这一事实怎么解释呢?”V我相信,这个问题也能比较容易地回答。在学会了说话和运用我们的语言描述事实以后,我们马上就会在一定程度上熟悉所谓的“推理”或者“论证”的程序,就是说,熟悉获得某种第二手信息的直觉程序,而这种第二手信息在我们的原始信息中没有明白表出。这种直觉程序部分地可按照推理规则加以分析。这些规则的表述是逻辑的主要任务。因此,我们可以规定,根据定义,一条逻辑学家的推理规则,当且仅当我们的前提是真的,遵从这规则能保证我们得出真的结论时,它才是好的或“正确的”推理规则。如果我们成功地发现,遵从某个所提出的规则使我们从真的前提得到假的结论——我称之为“反例”——那么,我们相信,这个规则是错误的。换句话说,当且仅当一条规则不存在反例时,我们才称这条推理规则是“正确的”,我们也许能够确定不存在这种反例。同样,当且仅当所遵从的一条规则没有反例存在时,我们才把对这条推理规则的遵从——即一个推理——称为“正确的”。可见,一条“好的”或“正确的”推理规则所以是有用的,是因为找不到反例,即因为我们能信赖它,把它作为一条从对事实的真描述导致对事实的真描述的程序规则。但是,既然我们能够说一个真描述适合于事实,所以在“适合”意义上的“适用”,终究以某种间接方式成为我们分析的一部分。因为,我们可以说,每当从一个对事实的适当描述开始,遵从一些推理规则,总是可赖以导致同样适合于这些事实的一个描述,就此而言,这些推理规则适用于事实。也许不无兴味的是,正确的推理从真的前提出发必然导致真的结论,这条原理的根本性的重要意义,已由亚里士多德相当详尽地讨论过(《前分析篇》,II,1-4)。Ⅵ为了看看这个结论有什么用,我将试着用它来批判关于逻辑本质的三种主要观点。我所指的这三种观点是:(A)逻辑规则是思维的规律。(A1)它们是自然的思维规律——它们描述我们实际上怎样思维的;我们不可能以别的方式思维。(A2)它们是规范性的规律——它们告诉我们应该怎样思维。(B)逻辑规则是最一般的自然规律——它们是描述性的规律,对一切对象都成立。(C)逻辑规则是某些描述性语言的规律——应用语词特别是语句的规律。我认为,(A1)所以如此广泛地为人们接受,其原因在于事实上关于逻辑规则有着某种使人不得不接受的、必然的东西——至少对于一些简单的逻辑规则是如此。它们被说成是十分有效的,因为我们不得不按照它们思维——因为它们对之无效的一种事态是不可思议的。而从一种不可思议的事态出发的一个论证,像其他自明的论证一样,总是可疑的。一条规则或一个命题看起来是真的、可信的、使人不得不接受的、自明的等等,这一事实显然还不足以成为它应当是真的理由,虽然反过来倒完全可能是事实的——它的真理性可能就是它在我们看来是真的或可信的理由。换句话说,如果逻辑规律对一切对象都成立,即如果(B)是正确的,那么,它们之使人不得不接受的特性就会是明白而又合理的了;否则的话,我们或许会感到所以不得不这样思维,仅仅是由于我们神经的不可抗拒的冲动。这样,我们对(A1)的批判便导致(B)。但是,对(A1)的另一种批判导致(A2);即这样的见解:我们的推理并不总是按照逻辑规律,有时候会犯通常所称的“错误”。(A2)断言,我们应该避免这种违反逻辑规则的事。但是,为什么呢?它不道德吗?当然不是的。“奇境中的爱丽丝”并非不道德。它是愚蠢的吗?大概不是吧。显然,我们应该避免违反逻辑规则,当且仅当我们对表述或导出真的陈述即对事实的真描述感兴趣。这种考虑再次把我们引向(B)。但是,在我看来,伯特兰·罗素、莫里斯·科恩和费迪南·冈塞斯这些人所持有的(B)这种观点,并不完全令人满意。首先,这是因为正如我们和赖尔教授所已强调的那样,推理规则是程序的规则而不是描述性的陈述;第二,因为一类重要的逻辑上真的公式(就是那些赖尔教授所称的逻辑学家的假言式)可以解释为或者说相当于推理规则,还因为像我们跟随赖尔教授所已指出的那样,这些公式并不在恰当的描述那个意义上适用于事实。第三,任何不考虑物理自明之理(例如“所有岩石都是沉重的”)和逻辑自明之理(例如“所有岩石都是岩石”,或者“要么所有岩石都是沉重的,要么有些岩石不是沉重的”)两者之间在地位上的根本差别的理论,必定是不能令人满意的。我们认为,这种逻辑上真的命题所以是真的,不是因为它描述了一切可能事实的变化情况,而只是因为它并不冒由任何事实证伪的危险;它不排斥任何可能的事实,因此它根本不对任何事实有所断定。但是,我们在这里不必探究这些逻辑自明之理的地位问题。因为,无论它们的地位可能怎样,逻辑从根本上说不是关于逻辑自明之理的学说;它主要是关于正确推理的学说。为了逻辑上的目的,我们可以把语言理解为“单纯的符号体系”,即没有任何“意义”(不管这可能意味着什么)的符号体系。观点(C)只要和以上这种看法密切相联,它就不能令人满意,为此它一直受到批评,我认为这种批评是正确的。我认为,这种观点是站不住脚的。因为我们对正确的推理所下的定义利用了“真理”这个术语,所以这个定义当然不适用于这种单纯的符号体系;因为,我们不能说一个“单纯符号体系”(它是没有意义的)包括真的或假的陈述。因此,就没有我们的意义上的推理,也没有推理的规则;结果,就回答不了我们的问题:为什么逻辑规则是正确的、好的或有用的。但是,如果用一种语言意指一种允许我们作出真陈述的符号体系(我们用它能够解释,当着我们说某个陈述是真的时候,是什么意思,就像塔尔斯基首先做的那样),那么,我相信,至今提出的反对(C)的那些理由就基本上丧失了其力量。关于这样一种语义语言体系的一个正确推理规则,在这种语言中就不会发现反例,因为没有反例存在。附带可以指出,这些推理规则不一定具有我们从逻辑研究得知的那种“形式的”特性;这些推理规则的特性倒是取决于所研究的语义语言体系的特性。(塔尔斯基和卡尔纳普已分析过语义语言体系的例子。)然而,对于和逻辑学家通常考虑的那些语言相似的语言来说,推理规则将具有我们习惯的那种“形式的”特性。VII如我上面的议论所指出的,我们正在讨论的程序规则,即推理规则,在某种程度上总是和一个语言体系有关。但是,这些规则都有如下共同点:遵从它们便从真的前提导致真的结论。因此,不可能存在下述意义上的可供选择的逻辑:它们的推理规则从真的前提导致不真的结论,这仅仅是因为我们对“推理规则”这个术语所下的定义致使这成为不可能。(这并不排斥把推理规则看作更加普遍的规则的一个特例的可能性。这种较普遍的规则的一个例子是,在某些准前提是真的条件下,我们可以赋予那些准结论以一定“可能性”。)然而,可能存在下述意义上的诸多可供选择的逻辑:它们对可说是迥然不同的语言——在我们所称的“逻辑结构”上不同的语言,提出一些可供选择的推理规则体系。例如,我们可以把直言命题(主-谓陈述)语言看作传统的直言三段论体系所阐述的推理规则。这种语言的逻辑结构可以下述事实表征:它只包含少量的逻辑符号——联系词及其否定的符号、全称和特称的符号,或许还有它的所谓的“词项”的补(或否定)的符号。如果我们现在来考虑第一节第二段中表述的那个论证,那么,我们看到,所有这三个前提以及结论都可用直言命题来表述。然而,如果这样表述的话,就不可能表述展现这种论证的一般形式的正确推理规则;因此,一旦用直言命题语言表达,就不再可能捍卫这种论证的正确性。一旦我们把“理查德的母亲”这些语词合并为一个词项——我们第一个前提的谓词——我们就不可能再把它们分离开来。这种语言的逻辑结构过于贫乏,不能展现这个事实,即这个谓词以某种方式包含了第二个前提的主词和第三个前提的主词的一部分。其余两个前提和结论也都是如此。因此,如果我们试图表述推理规则,我们就有下列那样的图式:“A是b”“C是d”“所有e都是f”------------------“A是g”(这里,“A”和“C”代表“雷切尔”和“理查德”,“b”代表“理查德的母亲”,“d”代表“罗伯特的父亲”,“e”代表“父亲的母亲”,“f”代表“祖母”,“g”代表“罗伯特的祖母”。)当然,这条规则是不正确的,因为在直言命题的语言中我们可以随意举出许多反例。因此,一种语言即使丰富得足以描述所有我们希望描述的事实,可能还是不允许表述为适用于我们能可靠地从真前提过渡到真结论的一切场合的必需的推理规则。VIII可以用上述这些考虑把我们的分析扩充到逻辑演算和算术演算的适用性问题;因为我们切莫忘记,到现在为止(随着赖尔教授)我们只是讨论了推理规则的适用性。我认为,构造所谓的“逻辑演算”主要是由于希望建立起一些语言,对于这些语言来说,所有我们直觉地知道怎样进行的推理都可加以“形式化”,就是说,都可表明是按照很少几条明显的正确的推理规则进行的。(这些作为程序规则的推理规则都述及我们正在探讨的语言或演算。所以,这些规则不是用所研讨的演算来表示,而是用这演算的所谓元语言,即我们讨论这演算时所用的语言来表示。)例如,三段论逻辑可以说是企图构造这种语言,许多支持它的人现在仍然相信,它是成功的,所有真正正确的推理都在它们的格和式中得到形式化。(我们已经看到,实际情况并非如此。)其他系统也是抱着类似目标建立起来的(例如《数学原理》),并在实际上把不仅通常议论遵从而且数学论证也遵从的正确推理规则都成功地加以形式化。人们很想构造一种语言或演算,以便我们能把所有正确的推理规则(部分地借助于演算本身的逻辑公式,部分地借助于从属于这演算的少数几条推理规则)形式化的任务,说成是显而易见的基本的逻辑问题。有很充分的理由相信,这个问题是无法解决的,至少在为了把相当简单的直觉推理形式化,我们不承认性质判然不同的程序(例如从无限类的前提出发进行的推理)时是如此。事情看来是这样的:尽管对于任何给定的正确的直觉推理能够构造某种得以把这种推理形式化的语言,但是,构造一种得以把所有正确的直觉推理都形式化的语言,却是不可能的。据我所知,这种令人感兴趣的情境,最早是塔尔斯基加以讨论的,他援引了哥德尔的研究成果。这种情境表明,每种演算的适用性(在它适合作为一种能够表述每个正确的直觉推理的语言的意义上)总要在某个阶段上丧失,就此而言,它和我们的问题是有关的。我现在转到适用性问题上来,但这次仅限于逻辑演算,或者更确切地说,限于逻辑演算的被断定的公式,而不是推理规则。为什么这些演算——它们可能包括算术演算——适用于实在呢?我试图用三句陈述的形式来回答这个问题。(1)这些演算通常是语义的系统,[5]就是说,旨在用于描述某些事实的语言。如果实际情况证明了它们是用于这种目的,那么,我们不必惊讶。(2)它们可能不是旨在用于这个目的;这一点我们可以从以下事实看出:某些演算——例如,自然数或实数的算术演算——有助于描述某些种类事实,但无助于描述其他种类事实。(3)就一种演算可运用于实在而言,它失去了逻辑演算的性质,而成为一种描述性理论,这种理论可经验地加以反驳;而就它被看作不可反驳的,即看作逻辑上真的公式系统,而不是一种描述性科学理论而言,它不适用于实在。关于(1)的评论可见于第ix节。这一节只简短讨论(2)和(3)。至于(2),我们可以注意到,自然数的演算用来计算台球、便士或鳄鱼,而实数的演算为度量像几何距离或速度这样的连续量提供一种构架。(在布劳威尔的实数理论中这一点特别清楚。)我们不应该说,在我们的动物园中,有例如3.6条或π条鳄鱼。为了计算鳄鱼,我们利用了自然数的演算。但为了确定我们动物园的纬度,或它同格林威治的距离,我们可能必须利用π。因此,认为任何算术演算都可用于任何实在的信念(这种信念似乎是我们专题讨论会议题的基础)看来是站不住脚的。至于(3),如果我们考虑像“2+2=4”这样的命题,那么,就可在若干不同的意义上运用于例如苹果。这里只讨论两种意义的运用。在第一种意义上,陈述“两只苹果加两只苹果等于四只苹果”被认为是不可反驳的、逻辑上真的。但是,它并不描述任何有关苹果的事实——一如“所有苹果都是苹果”这一陈述。像这后一个陈述一样,它也是一个逻辑自明之理;惟一的区别是,它不是建基于符号“所有”和“是”的定义之上,而是建基于符号“2”、“4”、“+”和“=”的确定的定义之上。(这些定义可以是明显的也可以是隐含的。)在这种情况下,我们可以说,这种运用不是实在的而只是视在的;我们在这里并未描述任何实在,而只是断定,描述实在的某种方式同另一种方式等价。更重要的是第二种意义上的运用。在这种意义上,“2+2=4”可认为意味着,如果某人把两只苹果放在某个篮子里,然后再放人两只,并且没有从这篮子里取出任何苹果,那么,这篮子里就有四只苹果。按这样的解释,陈述“2+2=4”帮助我们计算,即描述某些物理事实,而符号“+”代表一种物理操作——代表物理上把某些东西加在另一些东西之上。(我们在这里看到,描述性地解释一个显然逻辑的符号有时是可能的。[6])但是,在这种解释中,陈述“2+2=4”成为一种物理理论,而不是一种逻辑理论;结果,我们无法肯定它是否保持普遍地真。事实上,它并不保持普遍地真。它可能对苹果来说是成立的,但它对兔子就很难成立。如果你放2+2只兔子在一个篮子里,你可能不久发现这篮子里有7只或8只兔子。它也不适用于像水滴这样的事物。如果你在一个干燥的烧杯里滴人2+2滴水,你绝不可能从中取出四滴水来。换句话说,如果你对“2+2=4”不适用的一个世界会是怎样的世界感到疑惑,那么,你的这种好奇心是很容易满足的。一对不同性别的兔子或几滴水可以作为这样一个世界的模型。如果你回答说,这些例子不那么适当,因为这些兔子和水滴发生了某种变化,还因为方程“2+2=4”只适用于那些没有发生什么变化的对象,那么,我的回答是,如果你用这种方式解释的话,那么,它对“实在”并不成立(因为在“实在”中,始终发生着变化),而只对在其中什么变化也不发生的、由独特对象组成的抽象世界成立。显然,就我们的实在世界和这样的抽象世界相似而言,例如就我们的苹果不腐烂或仅仅很慢地腐烂而言,或就兔子或鳄鱼碰巧不生育而言,换句话说,就物理条件和纯逻辑的或算术的加法运算相似而言,算术当然是适用的。但是,这是很浅薄的。关于测量的相加也可作类似的陈述。有任何两根直杆,如果并行放置长度各为a,而首尾相接地放置,则总长度将是2a。这决不是逻辑地必然的。我们可以很容易想象一个世界,在这个世界里直杆的情况按照透视的规则变化,即一如它们在视野中和在照相底片上的变化情况;在这个世界里,杆在离开某个中心(例如透镜中心)时缩小。事实上,为了把某些可度量的量——速度——相加,我们就似乎生活在这样—个世界里。根据狭义相对论,通常的测量加法演算不适用于速度(就是说它导致错误的结果);必须用一种不同的演算来代替它。当然,可以拒斥这样的主张即通常的速度加法演算是不适用的,并且原则上也可拒绝这样的要求即应该对这种演算加以修改。这样的原则等于说:速度必须按通常的方式相加,或换句话说,等于隐含地主张:速度被限定要服从通常的加法定律。但在这里的情况下,速度不可再由经验测度来限定(因为我们不可能以两种不同的方式定义同一个概念),我们的演算也不复适用于经验的实在。赖尔教授帮助我们从分析“适用的”这个词的角度来研究这个问题。我以上的评述可以看作为企图由分析“实在”这个词来解决这个问题的一种补充尝试(还包括符号的逻辑应用和描述性用法之间的区别问题)。因为我相信,每当我们怀疑我们的陈述是否涉及实在世界时,我们总是可以通过问我们自己是否准备去接受一个经验反驳来判定。如果我们在面对反驳时(像由兔子、水滴或速度提供的反驳)原则上决心捍卫我们的陈述,那么,我们就不是在谈论实在。只有在我们准备接受反驳时我们才是在谈论实在。用赖尔教授的话来说,我们必须说:仅当我们懂得怎样容忍反驳时,我们才懂得怎样谈论实在。如果我们想表述这种情愿或认识方法,那么,我们必须再次借助于程序规则。显然,这里只有行为规则才能帮助我们,因为谈论实在就是一种行为。[7]Ⅸ我以上关于(3)的意见指出了一个方向,沿此方向或许能找到一个回答,来答复我认为是我们的多边问题的最重要的方面。但是,我想在结束本文之前一清二楚地表明,我认为这个问题还能更推进一步。我们可以问,为什么我们在谈论实在上取得成功?实在必定有确定的结构以使我们能谈论它,难道不是这样吗?我们难道不能设想实在像一团浓雾——此外什么也没有,没有固体,也没有运动吗?或者说像一团雾,其内部发生某些变化例如光的相当不确定的变化吗?当然,根据我描述这个世界的尝试,我已表明,世界能够用我们的语言来描述,但这并不是说,任何这样的世界都能够这样描述。我并不认为,这种形式的问题需要认真对待,但我也不认为它可以轻轻带过。事实上,我认为,我们都十分熟悉一个不能用我们的语言描述的世界,我们的语言发展出来主要是作为一种描写和论述我们的物理环境的工具——更确切地说,论述低速运动、中等大小物体的工具。我心里想到的那个不可描述的世界当然是我“在我心中”拥有的世界。大多数心理学家(除了行为主义者而外)都试图仅仅借助于许多取之于物理学、生物学和社会生活的语言的隐喻来描述这个世界,他们没有取得多大成功。但是,无论要描述的这世界是什么样子,也无论我们用的语言及其逻辑结构会是什么样,有一点我们是可以肯定的:只要我们描述世界的兴趣不变,我们就对真的描述和推理——就是说,从真前提到真结论的操作感兴趣。另一方面,当然没有理由相信,我们的日常语言是描述一切世界的最好手段。相反,它们可能甚至还不是较好地描述我们周围物理世界的最可能的手段。数学的发展,是对我们日常语言某些部分作了一定程度的人为发展,这种发展表明,新的种类的事实可以用新的语言手段描述。在具有例如五个数字和“许多”这个词的一种语言中,甚至A地比B地多6头羊这个最简单的事实也无法陈述。一种算术演算的应用使我们得以描述没有它就简直无法描述的关系。然而,关于描述手段和被描述事实之间的关系,还有一些进一步的可能更为深刻的问题。这些关系很少被正确地看待。反对对事物采取朴素实在论的哲学家在对待事实上常常是朴素实在论者。或许他们相信事物是逻辑的构造物(我认为这个观点是错误的),但他们又相信事实是世界的组成部分,类似于说过程或事物是世界的组成部分;类似于说世界由(四维的)过程或(三维的)事物构成。他们认为,正如某些名词是事物的名称一样,语句是事实的名称。他们有时甚至认为,语句是事实的图画那样的东西,或者说,它们是事实的投影。[8]但是,这一切都是错误的。这个房间里没有大象,这个事实并不是世界的过程或部分之一;新西兰丛林中一棵树倒下后正好过了一百十一年,纽芬兰出现了一次雹暴,这一事实也不是世界的过程或部分之一。事实是某种语言和实在的共同产物那样的东西;它们是由描述性陈述严格确定的实在。它们有如从一本书里摘录出来,这种摘录使用的语言不同于原书的语言,不仅由原书决定,而且几乎同样程度上也由选择原则、其他摘要方法和新语言的处理手段所决定。新的语言手段不仅帮助我们描述新的种类的事实;它们甚至在某种程度上创造新的种类的事实。从某种意义上说,这些事实显然在描述它们所不可缺少的新手段创造出来之前就已存在;我所以说“显然”,是因为一种计算,例如,今天借助相对论的演算对一百年前的水星运动进行的计算,肯定可以成为对有关事实的一种真描述,尽管这些事实出现时,相对论还没有发明出来。但是,从另一种意义上我们可以说,这些事实在被从事件连续统中挑选出来并由陈述——描述它们的理论——严格确定下来以前,并未作为事实而存在。然而,虽然这些问题同我们的问题密切相关,只能留待将来讨论。我把它们提出来,只是为了澄清一点:即使我已提出的这些解决多少是正确的,这个领域里仍然存在着一些悬而未决的问题。--------------------------------------------------------------------------------[1] 这是1946年在曼彻斯特举行的精神协会和亚里士多德学会联合会议上报告的专题论文的第3篇,刊载于《亚里士多德学会会议录》增补第20卷.专题论文第一报告人是吉尔伯特·赖尔教授。C.卢伊博士是第二个报告人,但他的文章交得太迟,因此我的论文来不及对它加以讨论。我论文的第一段这里删去了。[2] 赖尔教授递交这个讨论会的文稿对于理解我的论文是必要的,因此本文中扼要叙述了这篇文稿。[3] 比较亚里士多德的《后分析篇》,ii,19;l00a,8.[4] 我认为,表述这样一个图式的最好方法,是使用奎因的“准引证”(quasiquotation)的方法;但这里我不准备介绍奎因的用法。[5] 我在比卡尔纳普稍广一点的意义上使用这术语;因为我不明白,为什么一个设定在某个语义系统中具有一个(L-真)解释的演算,本身不能被简单地描述或解释为一个形式化的语义系统。[6] 这同塔尔斯基在他的《逻辑、语义学和元数学》第16章和卡尔纳普在他的《语义学导论》(Introduction to Semantics)中讨论的一些根本性问题有关。[7] 试把这些问题和我的(科学发现的逻辑)相比较。[8] 我指的是维特根斯坦在《逻辑哲学论》(Tractatus)中所说的话。注意此文写于1946年。目录页 冥王E书?2004上一页 下一页目录页 卡尔.波普尔《猜想与反驳》上一页 下一页十、真理、合理性和科学知识增长[1]1.知识的增长:理论和问题I我作这个讲演,目的是想强调科学某一个特殊方面的意义——科学必须增长,也可以说,科学必须进步。这里我并没有想到这种必需的实际意义或社会意义。我要说的是其思想意义。我相信连续性增长是科学知识的理性特点和经验特点所必不可少的;科学一旦停止增长,也必将失去这些特点。正因为连续增长,科学才成为理性的和经验的,也就是说,科学家只能从这样的增长中区别各种现有理论,从中选择较好的一种,或者在没有合乎要求的理论时提出他们为什么抛弃现有理论的理由,并由此提示一种合乎要求的理论所应遵循的条件。从这种说法中可以看出,我所想到的科学知识增长并不是指观察的积累,而是指不断推翻一种科学理论、由另一种更好的或者更合乎要求的理论取而代之。顺便提一下,即使有些人认为科学知识增长的最主要方面在于新的实验或新的观察,他们也会发现这个理论更替的过程很值得注意。正是对理论进行批判的审查,才使我们力图检验并推翻这些理论,这又促使我们进一步去作实验、去进行观察,没有理论和对理论进行批判所带来的激励和引导,谁也永远想不到要那样做。实际上最有趣的观察实验都是我们为了检验理论、特别是检验新的理论而精心设计的。因此,本文想着重说明科学的这一方面的重要意义,解决有关科学进步概念以及识别不同的对立理论的某些新老问题。我想讨论的新问题主要是关于客观真理以及不断趋于真理的概念的问题——我想这些概念将大大有助于分析知识增长的概念。讨论虽然局限于科学中的知识增长问题,但是我相信,我的论点不需很多修改即可适用于前科学知识的增长——就是说,也适用于一切人甚至动物获取关于世界的实际知识的一般方式。看来无论是低等动物或者高等动物,无论是黑猩猩或者科学大师,用的基本上都是通过试探和错误学习的方法,也即从错误中学习的方法。我的兴趣不仅在于科学知识的理论,更在于一般知识的理论。我相信,研究科学知识增长的最有效的办法,就是研究一般知识的增长。因为科学知识的增长可以说就是普通人类知识增长的放大(我已在1958年《科学发现的逻辑》一书序言中指出)。但是,我们对进步的需要有没有得不到满足的危险呢?科学知识的增长有没有到顶的危险呢?具体地说,科学的前进会不会由于科学已完成其任务而告终结呢?多亏我们的无知是无限的,使我们难以作如是想。科学进步的真正危险不在于科学会趋于终结,而在于诸如缺乏想像力(有时是缺乏真实兴趣的结果)、误信形式化和精确性(下面第V节将作讨论)、或者以某种形式出现的独裁主义。我几次三番用了“进步”这个词,最好还是在这里说清楚:可不要误以为我相信历史进步规律。其实我倒是多方抨击过进步规律的信念,[2]我坚信即使科学也决不会服从于这种规律的什么作用。科学史也像人类思想史一样,只不过是一些靠不住的梦幻史、顽固不化史、错误史。但科学却是这样一种少有的——也许是惟一的——人类活动,有了错误可以系统地加以批判,并且还往往可以及时改正。正因如此,只有对于科学才可以说我们经常从错误中学习,才可以清楚明白地说到进步。而大多数其他人类活动领域虽然有变化,却很少有进步(除非我们对生活中可能达到的目标持一种非常狭隘的眼光);几乎每有所得必有所失,甚至得不偿失。而在多数领域中我们甚至根本不知道应该怎样评价变化。然而在科学领域中我们拥有一种进步标准:甚至在一种理论受到经验的检验之前,我们就有可能说出,如果它经受住某种专门检验,它对于已知理论是否是一个进步。这是我的第一个论点。稍微换一种说法:我肯定我们知道一种好的科学理论应当怎样,甚至在它受到检验之前就知道哪一种理论(如果经受住判决性检验)将是更好的理论。正是这种(元科学)知识使我们可以谈论科学中的进步,可以谈论各种理论之间的理性选择。Ⅱ因此我的第一个论点就是:我们甚至可以在一种理论受到检验之前就知道,它如果通过了某些检验就将比其他理论更好。我的这个论点意味着,我们拥有一种相对潜在的令人满意的标准,或者说是潜在的进步标准,甚至在我们还不知道一种理论能否经受判决性检验而在实际上成为令人满意的理论之前就可以用上去了。这种相对潜在的令人满意的标准(我以前已论述过的,[3]它还附带地使我们可以根据理论的相对潜在的令人满意的程度对理论进行分级)是极其简单而直观的。其特点在于:凡是告诉我们更多东西的理论就更为可取,就是说,凡是包含更大量的经验信息或内容的理论,也即逻辑上更有力的理论,凡是具有更大的解释力和预测力的理论,从而可以通过把所预测事实同观察加以比较而经受更严格检验的理论,就更为可取。总之,我们宁取一种有趣、大胆、信息丰富的理论,而不取一种平庸的理论。由此看来,我们所要求于一种理论的这样一些特点,可以说完全是同一回事:要求丰富的经验内容或者高度的可检验性。Ⅲ我对一种理论(或者不管什么陈述)的内容的研究,是根据一个简单明了的想法:任何两个陈述a和b的合取ab的信息内容总是大于或至少等于其中任一组元。令a为陈述“星期五将下雨”,b为陈述“星期六将是晴天”,ab为陈述“星期五将下雨而星期六将是晴天”,显然,最后一个陈述即合取ab的信息内容将超过组元a或组元b的信息内容。而ab的概率(或者说ab为真的概率)显然将小于其任一组元。把“陈述a的内容”写作Ct(a),“合取a和b的内容”写作Ct(ab),则得:(1) Ct(a)≤Ct(ab)≥Ct(b)这同概率演算的对应定律形成对照,(2) P(a)≥P(ab)≤p(b)这里的不等号同(1)的正相反。(1)和(2)两条定律总起来,说明陈述的内容增加则概率减小,反之亦然;换言之,内容随非概然性的增加而增加。(这一分析当然与这一一般观念完全一致:一陈述的逻辑内容即为所有那些在逻辑上由这一内容所蕴涵的陈述的类。也可以说,陈述a比陈述凸在逻辑上更为有力,如果。的内容多于b的内容——就是说如果。所蕴涵的更多于b。)从这一平凡事实中不可避免地会得出以下的结论:如果知识增长意味着我们用内容不断增加的理论进行工作,也就一定意味着我们用概率不断减小(就概率演算而言)的理论进行工作。因而如果我们的目标是知识的进步或增长,高概率(就概率演算而言)就不可能也成为我们的目标:这两个目标是不相容的。大约三十年前我就发现了这个平凡而又基本的事实,而且此后我就一直鼓吹这一点。但是高概率一定为人们所高度向往这一偏见是根深蒂固的,许多人仍然认为这个显而易见的结果是“悖理”。[4]大多数人都不顾这个简单的结果,仍然觉得高概然度(就概率演算而言)一定也为人们所高度向往的想法似乎十分明显,以致不愿批判地加以考虑。因此,布鲁斯·布鲁克-韦维尔博士向我建议不要再在这里谈论概率,而应当把论据建立在“内容”和“相对内容”的“计算”上;换言之,我不应当说科学的目标在于负概率,只应当说科学的目标是最大限度的内容。对这一建议我想过很久,但我看并没有什么帮助:如果真要解决这个问题,与那种已被广泛接受而且根深蒂固的概率主义偏见的正面冲突看来是无法避免的。即使我把我的理论(这是十分方便的)建立在内容计算或逻辑力量计算的基础上,仍然必需解释:概率计算在(“逻辑地”)应用于命题或陈述时,只不过是对这些陈述的逻辑上的无力或内容的缺乏(绝对的或者相对的逻辑弱点)的计算。如果人们并不是这么普遍地、不加批判地认定高概率一定是科学的目标,因而认定归纳理论必定向我们解释怎样才能为理论获得高概然度,也许这种正面冲突本来是可以避免的。(这就有必要指出,还有另外一种“似真理性”或“逼真性”的计算,它完全不同于看来已搞得十分混乱的概率计算。)为了避免这些简单的后果而构思了多少有点更加复杂的各种理论。我相信我已证明任何这样一种理论都不成功。而且更重要的是,它们是完全不必要的。只是必须认清:我们所珍爱的、也许可称之为“逼真性”或“似真理性”(见以下第xi节)的理论的属性,并不是那种概率计算意义上的概率,(2)必然成为那种概率的定理。应当注意,我们所面临的问题并不是一个字眼问题。我并不介意你怎么称呼“概率”,如果你把所谓“概率计算”适用的程度叫做别的什么名称,我也不介意。我个人认为,保留“概率”这个名词,就满足这一著名的计算规则(拉普拉斯、凯恩斯、杰弗里斯等人曾表述过,我也曾对之给出各种形式的公理系统)而言,总是最方便的。当(且仅当)我们接受这一术语,毫无疑问,陈述a的绝对概率就完全成了它的逻辑的无力或信息内容的缺乏的程度,而陈述。的相对概率在给定陈述厶的情况下,也完全成了逻辑上相对无力或陈述a中新的信息内容的相对缺乏的程度,假定我们已掌握信息厶的话。这样,如果科学的目标在于大量信息内容,如果知识的增长意味着我们知道得更多,意味着我们知道了a和b而不只是a,由此我们的理论内容增多,那么我们就必须承认我们的目标也在于低概率,即概率计算意义上的概率。既然低概率意味着被证伪的高概率,由此得出,高的可证伪度或可反驳度、可检验度也是科学的目标之一——事实上,跟大量信息内容恰恰是同一个目标。于是潜在的令人满意的标准也就是可检验性或负概率:只有高度可检验的或非概然的理论才值得加以检验,并且如果它经受了严格检验,才是现实地(而不仅仅是潜在地)令人满意的;如果我们可以在进行这些检验之前就证明它们对这个理论来说是判决性的,则尤其是这样。在许多情况下都有可能客观地比较检验的严格性。如果我们认为值得的话,甚至有可能定义检验严格性的量度(见本书《附录》)。我们也可以用同一方法定义一种理论的解释力和确认度。[5]Ⅳ这里所提出的标准实际支配着科学的进步,这个论点可以立即用历史事例加以说明。开普勒和伽利略的理论由逻辑上更有力、更能经受检验的牛顿理论所统一和取代,同样,菲涅耳和法拉第的理论也由麦克斯韦理论所统一和取代。后来轮到了牛顿理论和麦克斯韦理论,它们又为爱因斯坦理论所统一和取代。这里的每一事例都是向着信息更多因而逻辑上更为非概然的理论进步,向着可以更严格地加以检验的理论进步,因为这一理论所作的预测从纯粹逻辑的意义上说更易于受到反驳。一种理论,如果事实上不曾因为检验它所引出的那些新的、大胆的、非概然的预测而遭到反驳,就可以说已通过这些严格检验而得到确认。在这方面我要提醒你们这样一些事例:伽勒发现海王星、赫兹发现电磁波、爱丁顿观测日食、埃尔萨塞把戴维森法则解释为德布罗意波的相干条纹、帕威耳观察到第一个汤川介子等等。所有这些发现都表明通过严格检验——通过从我们先前的知识(先于已受到检验和确认的理论)看来属于高度非概然的预测——而得到确认。其他重要的发现也是在检验理论时作出的,尽管不是导致对理论的确认而是导致反驳。最近一个重要事例是对宇称守恒的反驳。而拉瓦锡的表明蜡烛在闭合空间中燃烧时空气体积减少,或煅烧铁屑时重量增加的经典实验却未能建立氧燃烧理论,然而它们有助于驳倒燃素说。拉瓦锡的实验是精心构想的;然而甚至大多数所谓“偶然发现”基本上都具有同样的逻辑结构。这些所谓“偶然发现”通常都是对人们有意无意所坚持的理论的反驳:它们都是在我们的一些(基于这些理论的)预期出乎意外地落空时所作出的。因此,在偶尔看到汞加速了本来以为不受它影响的化学反应时,才发现了汞的催化作用。但无论是奥斯特还是伦琴、贝克勒耳、弗莱明的发现,其实都不是偶然的,尽管有一些偶然成分:这些人中间的每一个人一直都在探求他所发现的那种结果。我们甚至可以说,有些发现,如哥伦布发现美洲,确认了一种理论(大地是球形),同时反驳了另一理论(关于地球大小的理论以及由此得出的通向印度最近路径的理论);只有在这个意义上才可以说是偶然发现:它们违反一切预期,并且不是有意用来检验它们所反驳的那种理论的。V我所强调的科学知识的变革,它的增长或进步,在某种程度上可同那种把科学作为公理化演绎系统的流行观念形成对比。从欧几里得的柏拉图式宇宙论(我认为这才是欧几里得《几何原本》的真正意图所在)到牛顿的宇宙论,再到博什科维奇、麦克斯韦、爱因斯坦、玻尔、薛定谔和狄拉克的宇宙系统,这个观念一直统治着欧洲的认识论。这种认识论认为,科学活动的最终任务和目标就在于构造一个公理化的演绎系统。与此相反,我倒认为,与其把这些非常美妙的演绎系统看成是目的,不如看成是台阶:[6]我们走向更丰富、更能经受检验的科学知识的重要步骤。把演绎系统看成是手段或台阶,当然也就成为不可缺少的,因为我们必定要以演绎系统的形式发展理论。这已经是不可避免的了;因为如果要理论更好,更能经受检验,我们就必须要求它们具有逻辑力量和大量信息内容。它们的大量结论必须通过演绎逐渐展开,因为一般说来,一种理论只有一一检验过它的某些更间接的结论才能算是受到了检验;间接的结论,就是说,这些结论不是直观地审查所能立即看得出来的。

回详情
上一章
下一章
目录
目录( 16
夜间
日间
设置
设置
阅读背景
正文字体
雅黑
宋体
楷书
字体大小
16
已收藏
收藏
顶部
该章节是收费章节,需购买后方可阅读
我的账户:0金币
购买本章
免费
0金币
立即开通VIP免费看>
立即购买>
用礼物支持大大
  • 爱心猫粮
    1金币
  • 南瓜喵
    10金币
  • 喵喵玩具
    50金币
  • 喵喵毛线
    88金币
  • 喵喵项圈
    100金币
  • 喵喵手纸
    200金币
  • 喵喵跑车
    520金币
  • 喵喵别墅
    1314金币
投月票
  • 月票x1
  • 月票x2
  • 月票x3
  • 月票x5