逻辑思维训练500题(修订版)正文前序:思维训练让你更高、更强!前 言第一章 假设法第二章 计算法第三章 排除法第四章 分析法第五章 观察法前序:思维训练让你更高、更强! 当今时代是一个知识爆炸的时代,也是一个头脑竞争的时代;在竞争日益激烈的环境下,一个人想要很好地生存,不仅需要付出勤奋,而且还必须具有智慧。随着人才竞争的日趋激烈和高智能化,越来越多的人认识到只拥有知识是远远不够的。因为知识本身并不能告诉我们如何去运用知识,如何去解决问题,如何去创新,而这一切都要靠人的智慧——大脑思维来解决。认真观察周围的人我们也会发现,那些在社会上有所成就的人无不是具有卓越思维能力的人。 那么,思维的力量真的如此强大吗?为什么思维会对人有如此大的影响呢?早在20世纪40年代,西方发达国家就开始对人的大脑思维进行深入研究,希望能够揭开人类智慧的本质。通过研究他们发现,那些具有创造型思维和复合型思维的人,他们比一般人更善于思考,更懂得如何提炼有用的信息、如何驾驭和运用知识去解决新问题;从而,他们也就往往比其他人知道更多的信息,拥有更多的知识,在社会上也就混得更好。 世界著名的物理学家劳厄曾说过,“重要的不是获得知识,而是发展思维能力。教育无非是一切已学过的东西都遗忘掉的时候所剩下来的东西。”大量的事实也表明,个人的观察、分析、判断、理解、思考、决策、创意、策划、想像、洞察和战略规划等思维技能是否成熟,是否接受过系统的训练,将决定个人未来的职业发展前途。因此,一个人要想在激烈的脑力竞争中生存,就要学会更新自己僵化的头脑、简单的思维模式,让自己成为一个思维技能训练有素的人。 知识固然重要,但它并不一定能让我们变得智慧;因为,一个人智力的高低百分之九十取决于他拥有什么样的思维,知识只占百分之十。这也是为什么我们现代人虽然在知识的拥有量上已远远超过古人,但却还是达不到孔子和牛顿的智慧高度的原因。爱因斯坦曾说过这样一句话:“如果仅仅死记书本上可以翻到的东西,什么事件啦、人名啦、公式啦,等等,根本就不用上大学。这也就是说,一直以来学校教育教给我们的主要是知识的教育,而非思维的教育。所以,我们的思维也需要接受训练,一种可以让一个有许多知识的头脑变得更为灵活、更富创造力的训练。 爱迪生说过,“天才,就是百分之一的灵感加百分之九十九的努力!”其实,我们每个人都有一所金矿,这座金矿不是别的,就是我们自己的大脑。人有了大脑就能思维,就能在世界上创造出形形色色的奇迹。对于成功而言,可以说头脑中那百分之一的灵感才是最宝贵的;但遗憾的是,很少有人去研究那最宝贵的百分之一,去提高那最宝贵的百分之一。而本书——《思维训练500题》就是通过各种各样的测试题,让人们运用思维进行分析、综合、比较、抽象和概括,从而训练自己高超的思维技巧,让头脑变得越来越聪明,越来越灵活。 信息化的时代已经来到,面对竞争,我们应当培养什么样的头脑去迎接挑战呢?西方有句谚语:上帝偏爱有准备的头脑。只要你能够像训练体能一样训练你的逻辑思维能力,那么你的思维就会变得更快、更高、更强;在激烈的智力竞争中,你就能领先一步,更高一筹!前 言 一个人的逻辑思维能力并不是一下就能培养和发展起来的,它需要有一个长期的训练过程。不过,总体来说,逻辑思维能力的培养要从激发一个人的思维动机,理清一个人的思维脉络,培养正确的思维方法几个方面逐步做起。 人的思维是有动机的,当你有某方面的动机时,你的思维才会得到开发和运用。因此,激发思维的动机,以产生行为活动的内动力,是培养一个人思维能力的关键因素。认知心理学家指出:“思维能力的发展是寓于知识发展之中的。”所以,对于每一个问题,我们既要考虑它原有的知识基础,又要考虑它下联的知识内容。只有这样,我们才能更好地激发思维,并逐步形成知识脉络。实际上,提高逻辑思维能力的关键就在于要使思维脉络清晰化,思维脉络的重点理清了,一切问题也就迎刃而解了。 一个人的思维能力在发展的过程中有时会出现“卡壳”的现象,会发生一些转折,这就是思维的障碍点。思维在遇到障碍点时,就意味着你应学会适时地加以疏导、点拨,促使思维转过来,并以此为契机促进思维发展。比如,在解决问题时,我们常常需要把面对的问题通过转化、分析、综合、假设等变化成已解决过的问题。那么在这个思维的过程中,我们就需要依据具体情况恰当地运用分析与综合、具体与抽象、求同与求异、一般与特殊等思维方法。通过这些思维方法的运用,我们逻辑思维能力通常都会有较大的突破。 比如,当我们在对事物进行分析与综合的时候,我们的思维就会通过分析、综合把已经认识到的事物之间的联系在认识中分解开来,并把原来还没有认识到的事物之间的联系在认识中建立起来。恰当地采用分析或综合的思维方法,有利于沟通条件与问题的联系,建立起清晰的思维脉络。因此,当我们在分析具体问题的时候如果能将分析与综合结合起来,将有助于思维能力的提高。 这个世界上的任何事物之间都存在着差别,但同时又有着千丝万缕的联系。通过类比、归纳、演绎,对相关知识进行比较,不但构建了完整的知识体系,而且也发展了多极化的思维方法,从而就能够有效地促进思维的发展,克服思维定势。此外,任何事物之间都存在着共性与个性。通过思维引导感知一般与特殊的关系,就可以帮助自己树立具体问题具体分析的思维方式,培养自己灵活处理实际问题的能力。 综上所述,本书——《思维训练500题》就是本着这样一种理念,运用各种方法,如分析法、观察法、类比法、归纳法、演绎法、递推法、倒推法、综合法等,有目的、有计划地训练人们的逻辑思维能力。相信,这550个题做过完之后,你的逻辑思维能力和整体素质都会有一个质的飞越!第一章 假设法 一个真实的假设往往可以让事实呈现眼前,让真理浮出水面。一个人如果做什么事都可以让其思维以这些假设前提为基础,那么他便能真真正正地活在NLP里而不会陷入困境,他的人生也就会有更大地进步和提升。 初级题: 1.如何问问题? 有甲、乙两人,其中,甲只说假话,而不说真话;乙则是只说真话,不说假话。但是,他们两个人在回答别人的问题时,只通过点头与摇头来表示,不讲话。有一天,一个人面对两条路:A与B,其中一条路是通向京城的,而另一条路是通向一个小村庄的。这时,他面前站着甲与乙两人,但他不知道此人是甲还是乙,也不知道“点头”是表示“是”还是表示“否”。现在,他必须问一个问题,才可能断定出哪条路通向京城。那么,这个问题应该怎样问? 2.他们的职业是分别什么? 小王、小张、小赵三个人是好朋友,他们中间其中一个人下海经商,一个人考上了重点大学,一个人参军了。此外他们还知道以下条件:小赵的年龄比士兵的大;大学生的年龄比小张小;小王的年龄和大学生的年龄不一样。请推出这三个人中谁是商人?谁是大学生?谁是士兵? 3.谁做对了? 甲、乙、丙三个人在一起做作业,有一道数学题比较难,当他们三个人都把自己的解法说出来以后,甲说:“我做错了。”乙说:“甲做对了。”丙说:“我做错了。”在一旁的丁看到他们的答案并听了她们的意见后说:“你们三个人中有一个人做对了,有一个人说对了。”请问,他们三人中到底谁做对了? 4.鞋子的颜色 小丽买了一双漂亮的鞋子,她的同学都没有见过这双鞋了,于是大家就猜,小红说:“你买的鞋不会是红色的。”小彩说:“你买的鞋子不是黄的就是黑的。”小玲说:“你买的鞋子一定是黑色的。”这三个人的看法至少有一种是正确的,至少有一种是错误的。请问,小丽的鞋子到底是什么颜色的? 5.谁偷吃了水果和小食品? 赵女士买了一些水果和小食品准备去看望一个朋友,谁知,这些水果和小食品被他的儿子们偷吃了,但她不知道是哪个儿子。,为此,赵女士非常生气,就盘问4个儿子谁偷吃了水果和小食品。老大说道:“是老二吃的。”老二说道:“是老四偷吃的。”老三说道:“反正我没有偷吃。”老四说道:“老二在说谎。”这4个儿子中只有一个人说了实话,其他的3个都在撒谎。那么,到底是谁偷吃了这些水果和小食品? 6.谁在说谎,谁拿走了零钱? 姐姐上街买菜回来后,就随手把手里的一些零钱放在了抽屉里,可是,等姐姐下午再去拿钱买菜的时候发现抽屉里的零钱没有了,于是,她就把三个妹妹叫来,问她们是不是拿了抽屉里的零钱,甲说:“我拿了,中午去买零食了。”乙说:“我看到甲拿了。”丙说:“总之,我与乙都没有拿。”这三个人中有一个人在说谎,那么到底谁在说谎?谁把零钱拿走了? 7.夜明珠在哪里? 一个人的夜明珠丢了,于是他开始四处寻找。有一天,他来到了山上,看到有三个小屋,分别为1号、2号、3号。从这三个小屋里分别走出来一个女子,1号屋的女子说:“夜明珠不在此屋里。”2号屋的女子说:“夜明珠在1号屋内。”3号屋的女子说:“夜明珠不在此屋里。”这三个女子,其中只有一个人说了真话,那么,谁说了真话?夜明珠到底在哪个屋里面? 8.谁的成绩好 玲玲和芳芳经常在一起玩,有一次,有人问她们:“你们俩经常在一起玩,这次期末考试你们谁的成绩好呀?”玲玲说:“我的成绩比较好一点。”小红说芳芳说:“我的成绩比较差一些。”她们这两个人之中至少有一个人没有说实话。那么,到底她们谁的考试成绩好? 9.她们分别买了什么 小丽、小玲、小娟三个人一起去商场里买东西。她们都买了各自需要的东西,有帽子,发夹,裙子,手套等,而且每个人买的东西还不同。有一个人问她们三个都买了什么,小丽说:“小玲买的不是手套,小娟买的不是发夹。”小玲说:“小丽买的不是发夹,小娟买的不是裙子。”小娟说:“小丽买的不是帽子,小娟买的是裙子。”她们三个人,每个人说的话都是有一半是真的,一半是假的。那么,她们分别买了什么东西? 10.谁偷了奶酪 有四只小老鼠一块出去偷食物(它们都偷食物了),回来时族长问它们都偷了什么食物。老鼠A说:我们每个人都偷了奶酪。老鼠B说:我只偷了一颗樱桃。老鼠C说:我没偷奶酪。老鼠D说:有些人没偷奶酪。族长仔细观察了一下,发现它们当中只有一只老鼠说了实话。那么下列的评论正确的是: a.所有老鼠都偷了奶酪; b.所有的老鼠都没有偷奶酪; c.有些老鼠没偷奶酪; d.老鼠B偷了一颗樱桃。 11.一句问路的话 一个人站在岔道口,分别通向A国和B国,这两个国家的人非常奇怪,A国的人总是说实话,B国的人总是说谎话。路口站着一个A国人和一个B国人:甲和乙,但是不知道他们真正的身份,现在那个人要去B国,但不知道应该走哪条路,需要问这两个人。只许问一句。他是怎么判断该走那条路的? 中级题: 12.为什么小张是A队的 有一天,学校的学生在做游戏,A队只准说真话、B队只准说假话;A队在讲台西边,B队在讲台东边。这时,叫讲台下的一个学生上来判断一下,从A、B两队中选出的一个人——小张,看他是哪个队的。这个学生从A或B队中任意抽出了一个队员去问小张是在讲台的西边而是东边叫其中一个队员的人去问小张是在讲台西边还是东边。这个队员回来说,小张说他在讲台西边。这个学生马上判断出来小张是A队的,为什么? 13.凶手是谁 小阳的妹妹是小蒂和小红;他的女友叫小丽。小丽的哥哥是小刚和小温。他们的职业分别是: 小阳:医生 小刚:医生 小蒂:医生 小温:律师 小红:律师 小丽:律师 这6人中的一个杀了其余5人中的一个。 (1)假如这个凶手和受害者有一定的亲缘关系,那么说明凶手是男性; (2)假如这个凶手和受害者没有一定的亲缘关系,那么说明凶手是个医生; (3)假如这个凶手和受害者的职业一样,那么说明受害者是男性; (4)假如这个凶手和受害者的职业不一样,那么说明受害者是女性; (5)假如这个凶手和受害者的性别一样,那么说明凶手是个律师; (6)假如这个凶手和受害者的性别不一样,那么说明受害者是个医生。 根据上面的条件,请问凶手是谁? 提示:根据以个陈述中的假设与结论,判定哪3个陈述组合在一起不会产生矛盾。 14.小王是怎么算出来的 某企业老板在对其员工的思维能力进行测试时出了这样一道题:某大型企业的员工人数在1700~1800之间,这些员工的人数如果被5除余3,如果被7除余4,如果被11除余6。那么,这个企业到底有多少员工?员工小王略想了一下便说出了答案,请问他是怎么算出来的? 15.幼儿园里有多少小朋友 老师让幼儿园的小朋友排成一行,然后开始发水果。老师分发水果的方法是这样的:从左面第一个人开始,每隔2人发一个梨;从右边第一个人开始,每隔4人发一个苹果。如果分发后的结果有10个小朋友既得到了梨,又得到了苹果,那么这个幼儿园有多少个小朋友? 16.桌子分别是什么价格 一个家具店里有三种桌子,其价格分别如下: (1)他们的单价各不相同; (2)它们的单价加起来共4000元; (3)第二种桌子比第一种桌子便宜400元; (4)第三种桌子的单价是第二种的2倍。 那么这三种桌子的单价各是多少? 17.打碎了多少个陶瓷瓶 一个陶瓷公司要给某地送2000个陶瓷花瓶,于是就找一个运输公司运陶瓷花瓶。运输协议中是这样规定的: (1)每个花瓶的运费是1元; (2)如果打碎1个,不但不给运费,还要赔偿5元。 最后,运输公司共得运费1760元。那么,这个运输公司在运送的过程中打碎了多少个陶瓷花瓶? 18.分苹果 妈妈要把72个苹果给分兄弟两人,她的分法是这样的: (1)第一堆的2/3与第二堆的5/9分给了哥哥; (2)两堆苹果余下的共39个苹果分给了弟弟。 那么,这两堆苹果分别有多少个呢? 高级题: 19.两对双胞胎。 在老北京的一个胡同的大杂院里,住着4户人家,巧合的是每家都有一对双胞胎女孩。这四对双胞胎中,姐姐分别是ABCD,妹妹分别是abcd。一天,一对外国游人夫妇来到这个大杂院里,看到她们8个,忍不住问:“你们谁和谁是一家的啊?” B说:“C的妹妹是d。” C说:“D的妹妹不是c。” A说:“B的妹妹不是a。” D说:“他们三个人中只有d的姐姐说的是事实。” 如果D的话是真话,你能猜出谁和谁是双胞胎吗? 20.奇怪的两姐妹。 有一个人在一个森林里迷路了,他想看一下时间,可是又发现自己没带表。恰好他看到前面有两个小女孩在玩耍,于是他决定过去打听一下。更不幸的是这两个小女孩有一个毛病,姐姐上午说真话,下午就说假话,而妹妹与姐姐恰好相反。但他还是走近去他问她们:“你们谁是姐姐?”胖的说:“我是。”瘦的也说:“我是。”他又问:现在是什么时候?胖的说:“上午。”“不对”,瘦的说:“应该是下午。”这下他迷糊了,到底他们说的话是真是假? 21.走哪条路? 有一个外地人路过一个小镇,此时天色已晚,于是他便去投宿。当他来到一个十字路口时,他知道肯定有一条路是通向宾馆的,可是路口却没有任何标记,只有三个小木牌。第一个木牌上写着:这条路上有宾馆。第二个木牌上写着:这条路上没有宾馆。第三个木牌上写着:那两个木牌有一个写的是事实,另一个是假的。相信我,我的话不会有错。假设你是这个投宿的人,按照第三个木牌的话为依据,你觉得你会找到宾馆吗?如果可以,那条路上有宾馆哪条路上有宾馆? 22.今天星期几? 有一富翁,为了确保自己的人身安全,雇了双胞胎兄弟两个作保镖。兄弟两个确实尽职尽责,为了保证主人的安全,他们做出如下行事准则: a.每周一、二、三,哥哥说谎; b.每逢四、五、六,弟弟说谎; c.其他时间两人都说真话。 一天,富翁的一个朋友急着找富翁,他知道要想找到富翁只能问兄弟俩,并且他也知道兄弟俩个的做事准则,但不知道谁是哥哥,谁是弟弟。另外,如果要知道答案,就必须知道今天是星期几。于是他便问其中的一个人:昨天是谁说谎的日子?结果两人都说:是我说谎的日子。你能猜出今天是星期几吗? 23.玩扑克。 Jack夫妇请了Tom夫妇和Henrry夫妇来他们家玩扑克。这种扑克游戏有一种规则,夫妇两个不能一组。Jack跟Lily一组,Tom的队友是Henrry的妻子,Linda的丈夫和Sara一组。那么这三对夫妇分别为: A.Jack一Sara,Tom一Linda,Henrry一Lily; B.Jack一Sara,Tom~Lily,Henrry一Linda; C.Jack一Linda,Tom一Lily,Henrry一Sara; D.Jack一Lily,Tom一Sara,Henrry一Linda 24.谁是冠军? 电视上正在进行足球世界杯决赛的实况转播,参加决赛的国家有美国、德国、巴西、西班牙、英国、法国六个国家。足球迷的李锋、韩克、张乐对谁会获得此次世界杯的冠军进行了一番讨论:韩克认为,冠军不是美国就是德国;张乐坚定的认为冠军决不是巴西;李锋则认为,西班牙和法国都不可能取得冠军。比赛结束后,三人发现他们中只有一个人的看法是对的。那么哪个国家获得了冠军? 25.甲是哪个部落的人 有一个人到墨西哥探险,当他来到一片森林时,他彻底迷路了,即使他拿着地图也不知道该往哪走,因为地图上根本就没有标记出这一地区。无奈,他只好向当地的土著请求帮助。但是他想起来在曾有同事提醒他:这个地区有两个部落,而这两个部落的人说话却是相反的,即A部落的人说真话,B部落的人说假话。恰在这时,他遇到了一个懂英语的当地的土著甲,他问他:“你是哪个部落的人?”甲回答:“A部落。”于是他相信了他。但在途中,他们又遇到了土著乙,他就请甲去问乙是哪个部落的。甲回来说:“他说他是A部落的。”忽然间这个人想起来同事的提醒,于是他奇怪了,甲到底是哪个部落的人,A还是B? 26.猜城市。 对地理非常感兴趣的几个同学聚在一起研究地图。其中的一个同学在地图上标上了标号A、B、C、D、E,让其他的同学说出他所标的地方都是哪些城市。甲说:B是陕西。E是甘肃;乙说:B是湖北,D是山东;丙说:A是山东,E是吉林;丁说:C是湖北,D是吉林;戊说:B是甘肃,C是陕西。这五个人每人只答对了一个省,并且每个编号只有一个人答对。你知道ABCDE分别是哪几个省吗? 27.各有多少人民币? 爸爸为了考考儿子的智力,给儿子出了道题。爸爸说:“我手里有1元、2元、5元的人民币共60张,总值是200元,并且1元面值的人民币比2元的人民币多4张。儿子,给爸爸算算这三种面值的人民币各有多少张?”儿子眨了眨眼睛,摸摸脑袋,也不知道怎么算。你能算出来吗? 28.哪个正确 在一次地理考试结束后,有五个同学看了看彼此五个选择题的答案,其中: 同学甲:第三题是A,第二题是C。 同学乙:第四题是D,第二题是E。 同学丙:第一题是D,第五题是B。 同学丁:第四题是B,第三题是E。 同学戊:第二题是A,第五题是C。 结果他们各答对了一个答案。根据这个条件猜猜哪个选项正确? a.第一题是D,第二题是A; b.第二题是E,第三题是B; c.第三题是A,第四题是B; d.第四题是C,第五题是B。 附最佳答案: 初级题: 1.这个人只要站在A与B任何一条路上,然后,对着其中的一个人问:“如果我问他(甲、乙中的另外一个人)这条路通不通向京城,他会怎么回答?” 如果甲与乙两个人都摇头的话,就往这条路向前走去,如果都点头,就往另一外一条走去。 2.小张是商人,小赵是大学生,小王是士兵。假设小赵是士兵,那么就与题目中“小赵的年龄比士兵的大”这一条件矛盾了,因此,小赵不是士兵;假设小张是大学生,那就与题目中“大学生的年龄比小张小”矛盾了,因此,小张不是大学生;假设小王是大学生,那么,就与题目中“小王的年龄和大学生的年龄不一样”这一条件矛盾了,因此,小王也不是大学生。所以,小赵是大学生。由条件小赵的年龄比士兵的大,大学生的年龄比小张小得出小王是士兵,小张是商人。 3.假设丙做对了,那么甲、乙都做错了,这样,甲说的是正确的,乙、丙都说错了,符合条件,因此,丙做对了。 4.假设小丽的鞋子是黑色的,那么三种看法都是正确的,不符合题意;假设是黄色的,前两种看法是正确的,第三种看法是错误的;假设是红色的,那么三句话都是错误的。因此,小丽的裙子是黄色的。 5.是老三偷吃了水果和小食品,只有老四说了实话。用假设法分别假设老大、老二、老三、老四都说了实话,看是否与题意矛盾,就可以得出答案。 6.丙说谎,甲和丙都拿了一部分。假设甲说谎的话,那么乙也说谎,与题意不符;假设乙说谎,那么甲也说谎,与题意不符。那么,说谎的肯定是丙了,只有甲和丙都拿零钱了才符合题意。 7.1号屋的女子说的是真话,夜明珠在3号屋子内。假设夜明珠在1号屋内,那么2号屋和3号屋的女子说的都是真话,因此不在1号屋内;假设夜明珠在2号屋内,那么1号屋和3号屋的女子说的都是真话,因此不在2号屋内;假设夜明珠在3号屋内,那么只有1号屋的女子说的是真话,因此,夜明珠在3号屋里内。 8.芳芳。假设玲玲说的是实话,那么,芳芳说的也是实话了,与题意不符;假设芳芳说的是实话,那么玲玲说的也是实话了,与题意不符。因此,两个人都没有说实话,把她们两个人说的话反过来就会发现,芳芳的成绩好。 9.小丽买了帽子,小玲买了手套,小娟买了裙子。 10.假设老鼠A说的是真话,那么其他三只老鼠说的都是假话,这符合题中仅一只老鼠说实话的前提;假设老鼠B说的是真话,那么老鼠A说的就是假话,因为它们都偷食物了;假设老鼠C或D说的是实话,这两种假设只能推出老鼠A说假话,与前提不符。所以a选项正确,所有的老鼠都偷了奶酪。 11.如果甲是A国人,说的是真话,问甲:“如果我问乙哪条路是安全之路,他会指哪条路?”他指出的乙说的路就是错误的,另一条路就是正确的。 如果甲是B国人,说的是假话同样的问题问甲,因为乙说真话,甲会和乙的答案相反,那么另一条路就是正确的。 中级题: 12.若这个人是B队的,则找到的人是A队的,那人会说在讲台西,而这个人会说在东;若这个人是A队的,找到的是A队的,会说在西,若这个人是A队的,找到的是A队的,会说在西;若找到B队的,他会说在西,结果还是说西,所以只要说西,这人一定是讲真话那一队的。 13.根据上述中的假设,(1)和(2)中能适用于实际情况只有一个,同样,(3)和(4),(5)和(6),也是一样的情况。 根据上述中的结论,(2)和(5)适用于实际情况的可能不太大。因此,能适用于实际的情况,有以下几组中的一组或多组: A.(1)、(4)和(5) B.(1)、(3)和(5) C.(1)、(4)和(6) D.(1)、(3)和(6) E.(2)、(4)和(6) F.(2)、(3)和(6) 假如选项A能适用于实际情况,则根据(1)的结论,凶手是男性;根据(4)的结论,受害者是女性;可是根据(5)的假设,凶手与受害者性虽相同。因此A不适用。 假如选项B能适用于实际情况,由假设可知,凶手与受害者有亲缘关系而且职业与性别一样。这与每个家庭的组成情况不相符,因此B不适用。 假如选项C能适用于实际情况,则根据有关的结论,凶手是男性,受害者是个女性医生。又根据(1)和(4)的假设,凶手是律师,凶手与受害者有亲缘关系,这与各个家庭的组成情况不相符,因此C不适用。 假如选项D能适用于实际情况,则根据(1)的结论,凶手是男性,根据(3)的结论,受害者也同样是男的;又根据(6)的假设条件,凶手与受害者的性别不一样。因此D不适用。 假如选项E能适用于实际情况,则根据(2)的结论,凶手是医生;根据(6)的结论,受害者也是医生,又根据(4)的假设条件,凶手与受害者职业不一样。因此E不适用。 所以,根据以上的推论,只有F能适用于实际情况,凶手是医生,受害者是男性医生,根据组成的情况,凶手是女性。又根据各个家庭的组成情况,凶手必定是小蒂,(2)的假设则说明,受害者是小刚;而且,(3)的假设和(2)、(6)的论相符合。 14.小王是这样得出答案的:对题目中所给的条件进行分析,假如把全体员工的人数扩大2倍,则它被5除余1,被7除余1,被11除余1,那么,余数就相同了。假设这个企业员工的人数在34003600之间,满足被5除余1,被7除余1,被11除余1的数是5*7*11+1=386,386+385*8=3466,符合要求,所以这个企业共有1733个员工。 15.158个小朋友。10个小朋友拿到梨和苹果最少人数是(2+1)×(4+1)×(101)+1=136人,然后从左右两端开始向外延伸,假设梨和苹果都拿到的人为“1”,左右两边的延伸数分别为:3×5-3=12人,3×5-5=10人。所以,总人数为136+12+10=158。 16.第一种桌子的单价是1300,第二种桌子的单价是900元,第三种桌子的单价是1800元。假设第一种桌子的价格减少400元,那么,第一种桌子就与第二种桌子的价格相同了,这时,将总价格减少400元,就变以成3600元了,3600元是4个第二种桌子的总价格。3600/4=900元,900*2=1800元,900+400=1300元。 17.假设这些陶瓷花瓶都没有破,安全到达了目的地,那么,运输公司应该得到2000元的运费,但是运输公司实际得了1760元,少得了20001760=240元。说明运输公司在运送的过程中打碎的有花瓶,打碎一个共瓶,会少得运费1+5=6元,现在总共少得运费240元,从中可以得到一共打碎了240/6=40个花瓶。 18.第一堆苹果有45个,第二堆苹果有27个。假设第一堆苹果与第二堆苹果的5/9都分给了哥哥,那么哥哥所得的苹果就是总苹果数的5/9,这样哥哥就分到72*5/9=40个苹果,但实际哥哥分到了7239=33个苹果,由此推断分给哥哥的苹果,第一堆苹果少分的是第一堆苹果的5/92/3,正好与4033=7个相对应。因此,第一堆苹果有(4033)*(5/92/3)=45个,第二堆苹果有7245=27个。 高级题: 19.假设B说的是事实,则C就是d的姐姐,按D的依据就是C也为真,那么出现有两个人说的是事实,与题意矛盾,所以B说的不是事实,同时也知道C不是d的姐姐,则BC的话都是假的,所以只有A说的是真话,则A就是d的姐姐,A说B的妹妹不是a,又不可能是d,所以B的妹妹只可能是b或c,根据C的假话知道D的妹妹就是c,B的妹妹就是b,最后C的妹妹就是a。 20.假设是下午,那么瘦的说的就是真话,但是到底谁是姐姐就无法确定了。所以不可能是下午。那么就是上午,此时姐姐说真话,而胖的说是上午,所以胖的是姐姐,瘦的是妹妹。 21.假设第一个木牌是正确的,那么第一个小木牌所在的路上就有宾馆,第二条路上就没有宾馆,第二句话就该是真的,结果就有两句真话了;假设第二句话是正确的,那么第一句话就是假的,第一二条路上都没有宾馆,所以走第三条路,并且符合第三句所说,第一句是错误的,第二句是正确的。 22.首先分析,兄弟两个必定有一个人说真话,其次,如果两个人都说真话,那么今天就是星期日,但这是不可能的,因为如果是星期日,那么两个人都说真话,哥哥就说谎了。 假设哥哥说了真话,那么今天一定就是星期四,因为如果是星期四以前的任一天,他都得在今天再撒一次谎,如果今天星期三,那么昨天就是星期二,他昨天确实撒谎了,但今天也撒谎了,与假设不符,所以不可能是星期一、二、三。由此类推,今天也不会是星期五以后的日子,也不是星期日。 假设弟弟说了真话,弟弟是四五六说谎,那么先假设今天是星期一,昨天就是星期日,他说谎,与题设矛盾;今天星期二,昨天就是星期一,不合题意;用同样的方法可以去掉星期三的可能性。如果今天星期四,那么他今天就该撒谎了,他说昨天他撒谎,这是真话,符合题意。假设今天星期五,他原本应该撒谎但他却说真话,由“昨天我撒谎了”就知道不存在星期五、六、日的情况,综上所述,两个结论都是星期四,所以今天星期四。 23.B。因为游戏规则是“夫妇两个不能一组”,同样的,“没有一个女人同自己的丈夫一组”。对照以上原则,已知Jack跟Lily一组,所以Jack和Lily不能是夫妻,D选项不符合题意;再假设A正确,Jack跟Lily一组,那么剩下的两组只能是Tom和Sara,Henrry和Linda,对照题目已知“Tom的队友是Henrry的妻子”发现,Tom的队友Sara是Jack的妻子,于是假设不成立,A不符合题意;同样的道理,假设B正确,已知Jack跟Lily一组,剩下的两组就是Tom和Linda,Henrry和Sara,再对照已知“Tom的队友是Henrry的妻子”和“Linda的丈夫和Sara一组”发现完全吻合,因此假设成立。所以B符合题意;假设C成立,那么已知Jack跟Lily一组,剩下的两组就是Tom和Sara,Henrry和Linda,再对照已知条件“Tom的队友是Henrry的妻子”发现,Sara不是Henrry的妻子,因此,假设不成立,选项C不合题意。 24.先假设韩克正确,冠军不是美国就是德国;如果正确的话,不能否定张乐的看法,所以韩克的评论是错误的,因此冠军不是美国或者德国;如果冠军是巴西的话,韩克的评论就是错误的,张乐的评论也就是错误的。李锋的评论就是正确的。假设法国是冠军,那么韩克就说对了,同时张乐也说对了,而这与“只有一个人的看法是对的”相矛盾。所以英国不可能是冠军,巴西获得了冠军。 25.假设他是B部落的,则与他不认识的乙则为A部落的,则甲说假话,那么甲回来说的:“他说他是A部落的人”这句话应该反过来理解为:乙是B部落的,这就矛盾了;假定甲是A部落的,则他的话为真,并且与他不认识的乙应该是B部落的,那么乙说的就是假话。所以甲回来说:“他说他是A部落的人”,正好证明乙是B部落的,因此这个假设成立。所以甲是A部落的。 26.假设甲说的第一句话正确,那么B是陕西,戊的第一句话就是错误的,戊的第二句话就是正确的;C是陕西就不符合条件。甲说的第二句话正确。那么E就是甘肃。戊的第二句话就是正确的,C是陕西。同理便可推出A是山东,B是湖北,C是陕西,D是吉林,E是甘肃。 27.假设1元的人民减少4张,那么这三种人民币的总和就是604=54张,总面值就是2004=196元,这样1元和2元的人民币数量相等,再假设56张全是5元的,这时人民币的总面值就是5×56=280元,比先假设的多280196=84元,原因是把1元和2元都当成了5元,等于是多算了5×2(1+2)=7元,84÷7=12,由此就可以知道是把12张1元的和12张2元的假设成了5元,所以2元的有12张,1元的有12+4=16张,5元的就有32张。 28.选C。假设同学甲“第三题是A”的说法正确,那么第二题的答案就不是C。同时,第二题的答案也不是A,第五题的答案是C,再根据同学丙的答案知道第一题答案是D,然后根据同学乙的答案知道第二题的答案是E,最后根据同学丁的答案知道第四题的答案是B。所以以上四个选项第三个选项正确。第二章 计算法 计算时间,可以得出生命;计算贡献,可以得出价值。计算可以说充满着人的整个世界,人的每时每刻都需要用到计算。一个人如果可以加强自己的计算思维,那么他的人生将是慎密而精彩的。 初级题: 29.如何分酒? 一个人晚上出去打了10斤酒,回家的路上碰到了一个朋友,恰巧这个朋友也是去打酒的。不过,酒家已经没有多余的酒了,且此时天色已晚,别的酒家也都已经打烊了,朋友看起来十分着急。于是,这个人便决定将自己的酒分给他一半,可是朋友手中只有一个7斤和3斤的酒桶,两人又都没有带称,如何才能将酒平均分开呢? 30.赔了多少? 一天,小赵的店里来了一位顾客,挑了20元的货,顾客拿出50元,小赵没零钱找不开,就到隔壁小韩的店里把这50元换成零钱,回来给顾客找了30元零钱。过一会,小韩来找小赵,说刚才的是假钱,小赵马上给小李换了张真钱。 问:在这一过程中小赵赔了多少钱? 31.马匹喝水。 老王要养马,他有这样一池水: 如果养马30匹,8天可以把水喝光; 如果养马25匹,12天把水喝光。 老王要养马23匹,那么几天后他要为马找水喝? 32.竞赛成绩。 小强参加学校举行的小学生知识能力竞赛,比赛结束后,乐乐问小强得了第几名,小强故意卖关子,说:“我考的分数、名次和我的年龄的乘积是1958,你猜猜看。”乐乐想了没多久就说出了小强的分数、名次和年龄。 那么,你知道小强多大吗?他的竞赛名次和分数呢? 33.买卖衣服。 小丽花90元买了件衣服,她脑子一转,把这件衣服120元卖了出去,她觉得这样挺划算的,于是又用100元买进另外一件衣服,原以为会150元卖出,结果卖亏了,90元卖出。问:你觉得小丽是赔了还是赚了?赔了多少还是赚了多少? 34.鸡妈妈数数。 鸡妈妈领着自己的孩子出去觅食,为了防止小鸡丢失,她总是数着,从后向前数到自己是8,从前向后数,数到她是9。鸡妈妈最后数出来她有17个孩子,可是鸡妈妈明明知道自己没有这么多孩子。那么这只糊涂的鸡妈妈到底有几个孩子呢?鸡妈妈为什么会数错? 35.过桥。 星期天,洛洛全家人出去游玩,由于玩的太高兴了,忘记了时间,他们慌慌张张来到一条小河边,河上有座桥,一次只允许两个人通过。如果他们一个一个过桥的话,洛洛需要15秒,妹妹要20秒,爸爸要8秒,妈妈要10秒,奶奶要23秒。如果两个一块过桥的话,只能按着走路慢的人的速度来走。过桥后还要走2分钟的路。洛洛一家人急着到对面去赶最后一班的公交车。他们只有3分钟的时间,问小明一家能否赶上公交车?他们该怎样过桥?过桥用了多长时间? 36.卖苹果。 一个商人赶一辆马车走50公里的路程去县城卖50箱苹果,一个箱子里有30个苹果。马车一次可以拉10箱苹果。但商人进城时喜欢带上他的儿子。在进城的路上他的儿子每走一公里由于口渴都要吃掉一个苹果。那么商人走到县诚可以卖出多少个苹果? 37.青蛙跳井。 有一口深4米的井,井壁非常光滑。井底有只青蛙总是往井外跳,但是,这只青蛙每次最多能跳3米,你觉得这只青蛙几次能跳到井外去吗?为什么? 38.分桃子。 幼儿园的老师给三组小孩分桃子,如只分给第一组,则每个孩子可得7个;如只分给第二组,则每个孩子可得8个;如只分给第三组,则每个孩子可得9个。 老师现在想把这些苹果平均分别三组的孩子,你能告诉她要每个孩子分几个吗? 39.运大米。 有100石大米,需要用牛车运到米行,米行恰巧找来了100辆牛车,牛车有大小之分,大牛车一次可以运三石,中型的牛车可以运两石,而小牛车却需要用两辆才能运一石。请问如果既要把大米运完又要把100辆车用够,该如何分配牛车? 40.弹珠有多少? 天天跟甜甜一块到草地上玩弹珠,天天说:“把你的弹珠给我2个吧,这样我的弹珠就是你的3倍了。”甜甜对天天说:“还是把你的弹珠给我2个吧,这样我们的弹珠就一样多了。”分析一下,天天跟甜甜原来各有多少个弹珠? 41.天会黑吗? 6点放学,雨还在下,丽丽为了考考青青,便对青青说:“青青,雨已经下了三天了,看样子不打算停了,你觉得40小时后天会黑吗?” 42.开灯。 妈妈跟小军一块去逛街,回来后天已经黑了,妈妈叫小军开灯,小军想捉弄一下妈妈,连拉了7次灯,猜猜小军把灯拉亮没?如果拉20次呢?25次呢? 43.分书架。 毕业了,寝室的5个人需要分书架,一共有3个一模一样的书架,把这三个书架分给3个人,然后分到书架的三个人各拿出1000元,平均分给其余两人。这样一分,大家都觉得挺合理的。事后,其中一人算了半天也不知道到底一个书架是多少钱,你能告诉他吗? 44.买饮料。 小李有40元钱,他想用他们买饮料,老板告诉他,2元钱可以买一瓶饮料,4个饮料瓶可以换一瓶饮料。那么,小李可以买到多少瓶饮料? 45.切西瓜。 用水果刀平整地去切一个大西瓜,一共切10刀,最多能将西瓜切成多少块?最少能切多少块? 46.年龄各是多少? 一个家庭有4个儿子,把这四个儿子的年龄乘起来积为15,那么,这个家庭四个儿子的年龄各是多大? 47.哪个数最小? 有A、B、C、D四个数,它们分别有以下关系:A、B之和大于C、D之和,A、D之和大于B、C之和,B、D之和大于A、C之和。请问,你可以从这些条件中知道这四个数中那个数最小吗? 48.做题。 老师给全班60个学生布置了两道作业题,其中有40个人做对了第一道题,有31个人做对了第二道题,有4个人两道题都做错了。那么,你能算出来两道题都做对的人数吗? 49.解题 弟弟让姐姐帮他解答一道数学题,一个两位数乘以5,所得的积的结果是一个三位数,且这个三位数的个位与百位数字的和恰好等于十位上的数字。姐姐看了以后,心里很是着急,觉得自己摸不到头绪,你能帮姐姐得到这首题的答案吗? 50.头巾的颜色。 有一队人一起去郊游,这些人中,他们有的人戴的是蓝色的头巾,有的人戴的是黄色的头巾。在一个戴蓝色头巾的人看来,蓝色头巾与黄色头巾一样多,而戴黄色头巾的人看来,蓝色头巾比黄色头巾要多一倍。那么,到底有几个人戴蓝色头巾,几个人黄色头巾? 51.分果冻。 小红的妈妈买了许多果冻,这些果冻一共有48个,小红的妈妈对小红说:如果你能把这些果冻分成4份,并且使第一份加3,第二份减3,第三份乘3,第四份除3所得的结果一致,那你就可以吃这些果冻了。小红想了好长时间,终于把这个问题想出来了,聪明的你知道怎么分吗? 52.买书。 小红和小丽一块到新华书店去买书,两个人都想买《综合习题》这本书,但钱都不够,小红缺少4.9元,小丽缺少0.1元,用两个人合起来的钱买一本,但是钱仍然不够,那么,这本书的价格是多少呢? 中级题: 53.三针什么时候重合? 在一天(包括白天和黑夜)当中,钟表的三根针能够重合吗?什么时候重合? 54.概率是多少? 在一次贸易会上,有5个人进入贸易厅都要把自己随身携带的公文包交给保安验证,经过验证后保安再把公文包还给他们。由于保安的疏忽四个人离开时发现每个人拿的都不是自己的公文包。想一下,这种情况发生的概率是多少?如果是n个人呢?(n>1) 55.卖丝巾。 一家饰品店在关门之前处理货物,一条丝巾以20元的价钱卖不出去,老板决定降价到8元一条;结果没人要,无奈,老板只好再降价,降到3.2元一条,依然卖不出去,无奈,老板只好把价格降到1.28元一条。老板心想,如果这次再卖不出去,就要按成本价销售了。那么这条丝巾的成本价是多少呢? 56.买苹果。 有5个人去买苹果,他们买的苹果数分别是A,B,C,D,E,已知A是B的3倍,C的4倍,D的5倍,E的6倍,则A+B+C+D+E最小为多少? 57.逃跑的车。 某城市发生了一起车祸,汽车司机撞人后逃跑了。已知该城市只有两种颜色的车,黑色25%,灰色75%。车祸发生时有一个人目睹了车祸的过程,他指证是灰车,但是根据专家分析,当时那种条件能看正确的可能性是90%。那么,逃跑的车是黑车的概率到底是多少? 58.计算容积。 曾经有这样一个故事,一名毕业于名牌大学数学系的学生,因为他是学校的佼佼者,所以十分傲慢;一位老者很看不惯就给他出了一道求容积的题,老者只是拿了一个灯泡,让他计算出灯泡的容积是多少。傲慢的学生拿着尺子算了好长时间,记了好多数据,也没有算出来,只是列出了一个复杂的算式来。而老者只是把灯泡中注满了水,然后用量筒量出了水的体积,很简单就算出了灯泡的容积。 现在如果你手中只有一把直尺和一只啤酒瓶子,而且这只啤酒瓶子的下面2/3是规则的圆柱体,只有上面1/3不是规则的圆锥体。以上面的事例做参考,你怎样才能求出它的容积呢? 59.猪、牛、羊的单价各是多少? 现有2头猪、3头牛和4只羊,它们各自的总价都不满1000元钱。如果将2头猪与1头牛放在一起,或者将3头牛与1只羊放在一起,或者将4只羊与1匹马放在一起,那么它们各自的总价都正好是1000元钱了。那么猪、牛、羊的单价各是多少元钱? 60.付费。 某人租了一辆车从城市A出发,去城市B,在途中的一个小镇上遇到了两个熟人,于是三人同行。三人在城市乙呆了一天准备回城市甲,但是他的朋友甲决定在他们相遇的那个小镇下车,朋友乙决定跟他回城市A,他们用AA制的方式各付费用。从城市A到城市B往返需要40块钱,而他们相遇的小镇恰是AB两城的中点。三个人应怎么付钱呢? 61.种玉米。 从前有一个地主,他雇了两个人给他种玉米。两人中一人擅长耕地,但不擅长种玉米,另一人恰相反,擅长种玉米,但不擅长耕地。地主让他们种20亩地的玉米,让他俩各包一半,于是工人甲从北边开始耕地,工人乙从南边开始耕地。甲耕一亩地需要40分钟,乙却得用80分钟,但乙的种玉米的速度比甲快3倍。种完玉米后地主根据他们的工作量给了他们20两银子。问,俩人如何分这20两银子才算公平? 62.找零钱。 有一个香港人旅游来到泰国,在一家商店看上了一家相机,这种相机在香港皮套和相机一共值3000港币,可这家店主故意要410美元,而且他不要泰国铢,只要美元,更不要港币。现在相机的价钱比皮套贵400美元,剩下的就是皮套的钱。这个香港人现在掏出100美元,请问他能够买回这个皮套能吗? 63.狼与羊。 有一群狼,还有一群羊,一匹狼追上一只羊需要十分钟。如果一匹狼追一只羊的话,剩下一匹狼没羊可追,如果两匹狼追一只羊的话,那就有一只羊可以逃生。问,十分钟之后还会有多少只羊? 64.猜数字。 小明的三个同学来找小明玩,小明说:“咱们做个游戏吧。”其他三人表示同意。小明在他们三人的额头上各贴了一个的纸条,纸条上均写着一个正整数,并且有两个数的和等于第三个。但他们三人都能看见别人的数却看不见自己的数字。然后,小明问第一个同学:你知道你的纸条上写的是什么吗?同学摇头,问第二个,他也摇头,再问第三个,同样摇头,于是小明又从第一个问了一遍,第一个、第二个同学仍然不知道,问道第三个时他说:144!小明很吃惊。那么,另外两个数字是什么呢? 65.蜗牛爬行。 话说一百只蜗牛因为洪灾而同时被困在了一根1m长的木棍上,蜗牛一分钟能爬1cm,爬行时如果两只蜗牛相遇的话就会掉头继续爬。那么,要让所有的蜗牛都掉进水里,要多长时间? 66.商人买马。 一个商人从牧民那里用1000元买了一匹马。过两天,他认为自己吃亏了,要求牧民退回300元。牧民说:“可以,只要你按我的要求买下马蹄铁上的12颗钉子,第一颗是2元,第二颗是4元,按照每一颗钉子是前一颗的2倍,我就把马送给你,怎么样?”商人以为自己占了便宜便答应了。请问,最后的猜结果是什么?为什么? 67.公交车座位。 有一辆公交车总是在一个固定的路线上行驶,除去起始站和终点站外,中途有8个停车站,如果这辆公交车从起始站开始乘客,不算终点站,每一站上车的乘客中恰好又有一位乘客从这一站到以后的每一站下车。如果你是公交车的车长,为了确保每个乘客都有座位,你至少要安排多少个座位? 68.卖西瓜。 小张和小王经常在一起卖西瓜。一天,小张家里有点事,就把要卖的西瓜托付给小王代卖。没有卖之前,小张和小王的西瓜是一样多的,但是,小张的西瓜小一些,所以卖10元钱3个,小王的西瓜大一些,所以卖10元钱2个。现在小王为了公平,把所有的西瓜混在了一起,以20元钱5个出售。当所有的西瓜都卖完之后,小张和小王开始分钱,这时,他们发现钱比他们单独卖少了20元。这是怎么回事呢?小张和小王当时各有多少个西瓜呢? 69.小超市的闹钟。 小张在一个小超市买了一些东西。他离开的时候发现超市的钟指向11点50分,回到家,家里的钟已是12点5分,但小张发现他还有一些重要的东西没有买,于是,他就以同一速度返回小超市。到超市时发现超市的时钟指向12点10分。家里的钟是非常准确的,那么小超市的时钟是快还是慢? 70.有多少人迷路? 有9个人在沙漠里迷了路,他们所有的粮食只够这些人吃5天。第二天,这9个人又遇到了一队迷路的人,这一队人已经没有粮食了,大家便算了算,两队合吃粮食,只够吃3天。那么,第二队迷路的人有多少呢? 71.两人赛跑。 一个男生和一个女生在一起赛跑,当男生到达100m终点线的时候,女生才跑到90m的地方。现在如果让男生的起跑线往后退10m,这时男生和女生再同时起跑,那么,两个人会同时到达终线吗? 72.免费的餐饮。 在一个家庭里面有5口人,平时到周末的时候,这家人总是会去一家高档饭店吃饭。吃了几次,这家人就提议让老板给他们点优惠,免费送他们一餐。聪明的老板想了想,说道:“你们这一家人也算是这里的常客,只要你们每人每次都换一下位子,直到你们5个人的排列次序没有重复的时候为止。到那一天之后,别说免费给你们送一餐,送10餐都行。怎么样?”那么,这家人要在这个饭店吃多长时间饭才能让老板免费送10餐呢? 73.敲钟的速度。 在一个寺院里,每天和尚都要敲钟,第一个和尚用10秒钟敲了10下钟,第二个和尚用20秒敲了20下钟,第三个和尚用5秒钟敲了5下钟。这些和尚各人所用的时间是这样计算的:从敲第一下开始到敲最后一下结束。这些和尚的敲钟速度是否相同?如果不同,一次敲50下的话,他们谁先敲完。 74.火车早到多长时间? 有一天,小张乘坐火车到达某一个地方给小王送货,本来说好小王来接小张的,可是,这天火车提前到站了,所以小张就一个人开始往小王住的地方走,走了半个小时后,迎面遇到了小王,小王接过东西,没有停留就掉头回去了。当小王到住的地方时发现,这次接货回来的时间比平时早了10分钟。那么,这天的火车比平时早到了多长时间呢? 75.核桃有多少? 有一堆核桃,如果5个5个的数,则剩下4个;如果4个4个的数,则剩下3个;如果3个3个的数,则剩下2个;如果2个2个的数,则剩下1个。那么,这堆核桃至少有多少呢? 高级题: 76.开始打工的日子。 有一个小伙子在一家工地上连续打工24天,共赚得190元(日工资10元,星期六半天工资5元,星期日休息无工资),他记不清自己是从1月下旬的哪天开始打工的,不过他知道这个月的1号是星期日,这个人打工结束的那一天是2月的哪一天? 77.三个火枪手。 在古英国曾有这样一个故事:三个火枪手同时看上了一个姑娘,这个姑娘不好选择,提出让他们以枪法一较高低。谁胜出她就嫁给谁。第一个火枪手的枪法准确率是40%,第二个火枪手的准确率是70%,第三个火枪手的准确率是百分之百。由于谁都知道对方的实力,他们想出了一个自认为公平的方法:第一个火枪手先对其他两个火枪手开枪,然后是第二个,最后才是第三个火枪手。按照这样的顺序循环,直至剩下一个人。那么这三个人中谁胜出的几率最大?他们应采取什么策略? 78.电影院卖票。 有一些人排队进电影院,票价是5角。查了一下,进电影院人的个数是2个倍数,在这些人当中,其中一半人只有5角,另外一半人有1元纸票子。电影院开始卖票时竟1分钱也没有。有多少种排队方法使得每当一个1元买票时,电影院都有5角找钱?(拥有1元的人都是纸币,没法破成2个5角的纸币) 79.称重。 有4头猪,这4头猪的重量都是整千克数,把这4头猪两两合称体重,共称5次,分别是99、113、125、130、144,其中有两头猪没有一起称过。那么,这两头猪中重量较重那头有多重? 80.距离是多少。 方静是一个很爱看书的孩子,在她的书架上,摆满了各种学科的书籍,其中的一个方格里,摆的都是历史类书籍。在这个方格里,方静按历史的先后顺序从左到右摆放着,因为摆放的时间过长生了蛀虫。其中的一本《中国历史》,分为四书;每一本的总厚度有5厘米,封面与封底的各自厚度为0.5厘米。 如果蛀虫从第一本的第一页开始咬,直到第四本的最后一页,你能算出这只蛀虫咬的距离是多少吗? 81.冰与水。 在我们很小的时候,就明白了“热胀冷缩”的道理;但是有一种很特别的物质却并不遵循这个道理,那就是水,有时候它是“冷胀热缩”。经过多次的实验得出结论:当水结成冰时,其体积会增长1/11,以这个为参考,你知道如果冰融化成水时,其体积会减少多少吗? 82.钟表匠装表。 有一个老钟表匠很粗心,有一次,他给一个教堂安装钟表。结果他由于粗心把钟表的短针和长针装反了,短针走的速度反而是长针的12倍。由于装的时候是上午6点,钟表匠把短针指在“6”上,长针指在“12”上。装过后,钟表匠就回家了。结果细心的市民发现钟表这会儿还是7点,没过一会儿就8点了。人们通知钟表匠过来看看。钟表匠比较忙,就说下午去看看,等钟表匠赶到的时候已经是下午7点多钟。钟表匠看教堂的时间也不错,就回家了。但钟表依旧8点、9点的走,人们又去找钟表匠。钟表匠第二天早晨8点多赶来用表一对,仍旧没错。请你思考一下他对表的时候是7点几分和8点几分? 83.买葱。 有一个人买葱,大葱1块钱一斤,这人便跟卖葱的商量,如果葱叶那段每斤两毛,葱白每斤8毛并且分开秤的话他就全买了。卖葱的一想反正自己不会赔钱,便答应了,结果却发现赔了不少钱。你知道为什么卖葱人会赔钱吗?我让琳儿想了一下,在我的提醒下总算想明白了,如果分段买那么1元钱可以买2斤葱了,可到底什么原因呢? 84.猜年龄。 两个好友在路上相遇。于是互相攀谈起来。甲对乙说:“我记得你有三个女儿,他们现在多大了?”乙说:“他们的乘积是36,他们的年龄恰好是今天的日期,也就是13。”“嘿,伙计,你还没告诉我你女儿的年龄呢。”“哦,是吗?我的小女儿是红头发的。”乙说。“那我知道你三个女儿多大了。”甲答道。你知道乙三个女儿的年龄吗? 85.求表面积。 有一个长方体的铁块,这个铁块正好可以锯成三个正方体的铁块,如果锯成正方体的铁块,表面积就会增加20平方厘米,那么,这个长方体铁块原来的表面积是多少? 86.包装书。 小红要把7本长40cm、宽30cm、厚5cm的书籍包在一起。请你告诉她她至少要包装纸多少平方厘米? 87.各有多少把伞。 有红黄蓝三种伞共160把,如果取出红伞的1/3,黄伞的1/4,蓝伞的1/5,则剩120把。如果取出红伞的1/5,黄伞的1/4,蓝伞的1/3,则剩下116把。请问,这三种伞原来各有多少? 88.盖火印。 有一个商人,他经常让马为他托运货物,这些马有的强壮,有的比较弱,商人为了区别它们,便决定通过盖火印的方法给每一区马都做个记号。在给马盖火印时马都会因为疼痛叫喊3分钟。假设马的叫声是不会重叠的。如果给15头马盖火印,至少可以听马叫喊多长时间? 89.算灯笼。 国庆期间,有一家饭店为了炫耀自己的豪华,在饭店的大厅里装了许多的灯笼。其中一种装法是一盏灯下一个大灯笼两个小灯笼,另一种是一盏灯下一个大灯笼四个小灯笼。大灯笼共有360个,小灯笼有1200个。你觉得这家饭店的大厅里两种灯各有多少盏? 90.仆人做工。 一个人在一个大户人家里做仆人。大户人家的主人给仆人一根3尺长,宽厚均为1尺的木料,让仆人把这块木料做成木柱。仆人就把这块木料放到称上称了一下,知道这块木料重3千克kg,即将做成的木柱只重2kg。于是仆人从方木上砍去1立方尺的木材,但主人认为仆人这样做不合理。仆人该怎么向主人解释呢? 91.巧分遗产。 有一个人得了绝症,不久就离开了人世。这个人生前有70000元的遗产,他死前他的妻子已经怀孕了。在遗嘱中这人说,如果他的妻子生下的是儿子的话,女人所得的遗产将是她儿子的一半,如果是女儿的话她的遗产就是女儿的二倍。结果女人生下的是双胞胎,一儿一女。这下子律师为难了。恰在这时一个高中生说了一个方法,便轻松的解决了这个难题。你知道这个高中生是怎么分的吗? 92.黑红手绢。 有一个班的学生在元旦时开了一个联欢晚会。其中有一个游戏环节需要全场的同学都参与。班长给每个人背上都挂了一个手绢,手绢只有黑红两种颜色,其中黑色的手绢至少有一顶。每个人都看不到自己背上究竟是什么颜色的手绢,只能看到别人的。班长让大家看看别人背上的手绢,然后关灯,如果有人觉得自己的手绢是黑色的,就咳嗽一声。第一次关灯没有反应,第二次关灯依然没有反应,但第三次关灯后却听到接连不断的咳嗽声。你觉得此时至少有多少人背上是黑手绢? 93.薪水难题。 有两个人在一家工地做工,由于一个是学徒,一个是技工,所以他们的薪水是不一样的。技工的薪水比学徒的薪水多20美元,但两人的薪水之差是21美元。你觉得他俩的薪水各是多少? 94.蜗牛爬三角。 将三中蜗牛放在一个正三角形的每个角上。每只蜗牛开始朝另一只蜗牛做直线运动,目标角是随机选择。那么蜗牛互不相撞的概率是多少? 95.买玩具。 有六个小朋友去玩具店里买玩具,他们分别带了14元、17元、18元、21元、25元、37元钱,到了玩具店里,他们都看中了一款游戏机,一看定价,这六个人都发现自己所带的钱不够,但是其中有3个人的钱凑在一起正好可买2台,除去这3个人,有2人的钱凑在一起恰好能买1台。那么,这款游戏机的价格是多少呢? 96.龟兔赛跑谁在先 乌龟和兔子赛跑的原版,是由于兔子过于贪玩乌龟胜出了。但依兔子的速度可以远远超过乌龟的。而现在有一总长此4.2km的路程,兔子每小时跑20km,乌龟每小时跑3km。不停地跑。但兔子却边跑边玩,它先跑1分钟,然后玩15分钟。又跑2分钟,再玩15分钟……那么,先到终点的比后到终点的要快多少分钟? 附最佳答案 初级题: 29.第一步,先将10斤酒倒满7斤的桶,再将7斤桶里的酒倒满3斤桶;第二步,再将3斤的桶里的酒全部倒入10斤桶,此时10斤桶里共有6斤酒,而7斤桶里还剩4斤;第三步,将7斤桶里的酒倒满3斤桶,再将3斤桶里的酒全部倒入10斤桶里,此时10斤桶里有9斤酒,7斤桶里只剩1斤;第四步,将7斤桶里剩的酒倒入3斤桶,再将10斤桶里的酒倒满7斤桶;此时3斤桶里有1斤酒,10斤桶里还剩2斤,7斤桶是满的;第五步,将7斤桶里的酒倒满3斤桶,即倒入2斤,此时7斤桶里就剩下了5斤,再将3斤桶里的酒全部倒入10斤桶,这样就将酒平均分开了。 30.首先,顾客给了小赵50元假钞,小赵没有零钱,换了50元零钱,此时小赵并没有赔,当顾客买了20元的东西,由于50元是假钞,此时小赵赔了20元,换回零钱后小赵又给顾客30元,此时小赵赔了20+30=50元,当小韩来索要50元时,小赵手里还有换来的20元零钱,他再从自己的钱里拿出30元即可,此时小赵赔的钱就是50+30=80元,所以小赵一共赔了80元。 31.第一步:根据题意可以知道这道题是在理想情况下的。30匹马8天把水喝光,马匹数加上所用天数就是38; 第二步:25匹马12天喝光水,马匹数加上所用天数是37; 第三步:由于第一步的加和是38,第二步的加和是37,说明马匹数加上喝光水所用天数的和是逐次递减的; 第四步:如果23匹马把水喝光所用天数加上马匹数就应该是36,所以答案应该为3623=13天,即23匹马13天能把水喝光。 32.第一步:小强考的分数、名次数和他年龄的乘积是3256,就说明分数、名次数和年龄是1958的质因数; 第二步:将1958因式分解,得质因数1、2、11、89; 第三步:因为这是小学生知识竞赛,所以小强的年龄不可能是1、2,更不可能是89,只能是11,所以小强的年龄是11岁; 第四步:小强的分数是89,相应的竞赛名次是2。 33.第一步:小丽花了90元买了一件衣服,结果120元卖出,此时她赚了12090=30元; 第二步:小丽又花了100元买了另外的衣服,90元卖出,此时她赚的钱是90100=10元,说明这次她赔了10元,这里的150元是干扰的数字; 第三步:第一步小丽赚了30元,但第二步她赔了10元,所以赚的钱数是3010=20元。 总的来说小丽还是赚了,并且赚了20元。 34.第一步:此时鸡妈妈数数是从后向前数,数到她自己是8,说明她是第八个,她的后面有7只小鸡; 第二步:鸡妈妈又从前往后数数,数到她她自己是9,说明她前面有8只小鸡; 第三步:鸡妈妈的孩子总数应该是15,而不是17,鸡妈妈数错的原因是她数了两次都把她自己数进去了。 35.第一步:在这里奶奶走的最慢,其次是妹妹,然后是洛洛、妈妈、爸爸,所以因该让走的最慢和次慢的同时过桥,也就是先让奶奶和妹妹过桥,所用时间以奶奶为准,即23秒; 第二步:这一次同样让走路最慢和次慢的同时过,即洛洛和妈妈过桥,所用时间以洛洛为准,即15秒; 第三步:这一次爸爸一个人过,所用时间是8秒。此时他们一家过桥一共用了46秒; 第四步:过完桥他们还要走两分钟的路,走完路需要时间是两分钟46秒,此时离三分钟还有14秒,所以他们赶的上公交车。过桥顺序是奶奶和妹妹,洛洛和妈妈,爸爸,过桥用了46秒。 36.这50箱苹果可以均分为5份,也就是分5次卖完。由于马车一次运10箱苹果,一箱有30个苹果,也就是商人进一次城时运300个苹果,走一公里商人的儿子都要吃一个,当到达城里时,他的儿子已经吃了49个苹果,第二次同样他的儿子都要吃掉49个苹果,第三次、第四次、第五次也一样,所以最后他儿子一共吃了49*5=245个苹果,所卖苹果总数是50*30245=1255个苹果。 37.此题易混淆人的做题思路。多数人认为青蛙一次跳3m,两次就可以跳6米,超过了井的深度,两次就可以跳出井。这是错误的。因为题中说“井壁非常光滑”,说明青蛙在跳到3米高度时,会因为触到井壁而重新落回井底,所以无论这只青蛙跳多少次,它都跳不到井外去,除非它一次跳的高度超过井的深度。 38.设有N个桃子,一组X个孩子,二组Y个孩子,三组Z个孩子,则有N/X=7,N/Y=8,N/Z=9。由上式知道桃子数量是7、8、9的公倍数;然后算出最小公倍数504,分别除以7、8、9,得出小组的数量比:72:63:56;最后用504除以7、8、9的和,得出每个孩子分到的桃是21个。 39.首先可以设大牛车用x辆,中型牛车y辆,小型牛车z辆,依题意知x+y+z=100,3*x+2*y+z/2=100,然后分情况讨论即可得出答案。 40.第一步:先假设天天有弹珠x个,甜甜有弹珠y个; 第二步:由天天的话可以得到x+2=3y; 第三步:由甜甜的话可以得到x2=y; 第四步:解两个式子得x=4,y=2即为答案。 41.因为40小时已经超过了一天一夜的时间,但没有超过48小时,所以用48去掉一天的时间24小时,剩余16小时,在下午六点的基础上再加上16个小时,六点到夜里12点只需6个小时,所以剩余的10个小时是第二天的时间,即是第二天的上午10点,此时明显天是亮的,所以那时天不会黑。 42.小军拉第一次灯时灯已经亮了,再拉第二下灯就灭了,如果照此拉下去,灯在奇数次时是亮的,偶数次是关的,所以7次后灯是亮的,20次是关的,25次灯是亮的。 43.得到书架的三个人每个人拿出1000元,一共是3000元,将3000元给两个人平分,也就是两个人每人拿到3000/2=1500元,所以说,书架的价值应该是1500+1000=2500元。 44.先用40元钱买20瓶饮料,得20个饮料瓶,4个饮料瓶换一瓶饮料,就得5瓶,再得5个饮料瓶,再换得1瓶饮料,这样总共得20+5+1=26瓶。 45.最多能将西瓜切1024次块,就是2的10次方。最少切11块。 46.把15分解因数,15=5*3*1*1或15=15*1*1*1,因此,这个家庭4个儿子的年龄为5岁,3岁,1岁,1岁或者15岁,1岁,1岁,1岁。这4个儿子中,有可能有一对是双胞胎,也有可能有三个是三胞胎。 47.C最小。由题意可得(1)A、B>C、D;(2)A、D>B、C;(3)B、D>A、C。由(1)+(2)得知A>C,由(1)+(3)可得知B>C,由(2)+(3)得知D>C,所以,C最小。 48.根据题干所提的我们先假设,两位数是AB,三位数是CDE,则AB*5=CDE。 第一步:已知CDE能被5整除,可得出个位为0或5。 第二步:若后一位数E=0,由于E+C=D,所以C=D。 第三步:又根据题意可得CDE/5的商为两位数,所以百位小于5。 第四步:因为上一步得出了C=D,因此,当C=1,2,3,4时,D=1,2,3,4,CDE=110,220,330,440。 第五步:若E=5,当C=1,2,3,4时,D=6,7,8,9,CDE=165,275,385,495。 所以,这道题应该有8个这样的数。 49.两道题都做对的有15个人。40+31(604)=15。 50.由于每个人都看不到自己头上戴的头巾,所以,戴蓝色头巾的人看来是一样多,说明蓝色头巾比黄色头巾多一个,设黄色头巾有X个,那么,蓝色头巾就有X+1个。而每一个戴黄色头巾的人看来,蓝色头巾比黄色头巾多一倍。也就是说2(X1)=X+1,解得X=3。所以,蓝色头巾有4个,黄色头巾有3个。 51.四份分别是12,6,27,3。设这四份果冻都为X,则第一份为X+3,第二份为X3,第三份为3X,第四份为X/3,总和为48,求得X=9。这样就知道每一份各是多少了。